FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The figure belows shows three components of an air-conditioning system, where T3= 115°F and m˙3= 1.5 lb/s. Refrigerant 134a flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible.
Modeling air as an ideal gas with constant cp = 0.240 Btu/lb · °R, determine the mass flow rate of the air, in lb/s.
* Your answer is incorrect.
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a
rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.², and 180°F, respectively; at the exit the pressure is 90 lbf/in.²
The pump requires 1/15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58
lb/ft3 and constant specific heat of 1 Btu/lb. °R.
Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
ΔΤ :
= i 0.36
°R
The figure belows shows three components of an air-conditioning system, where T3 = 115°F and ng = 3 lb/s. Refrigerant 134a
flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state
operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic
and potential energy effects are negligible.
Air
T = 535°R
p= 0.240 Btu/lb-"R
Saturated liquid R-134a
T3, m3
Fan
Wey=-0.2 hp
Throttling
valve
5
www
Saturated vapor
Ps=P4
P.= 60 lbfin.?
T;= 528°R +2
- Heat exchanger
Modeling air as an ideal gas with constant c, = 0.240 Btu/lb - °R, determine the mass flow rate of the air, in Ib/s.
mi =
Ib/s
Knowledge Booster
Similar questions
- 4.30 Refrigerant 134a enters a heat exchanger operating ai steady state as a superheated vapour at 10 bars. 60°C. where it is cooled and condensed to saturated liquid at 10 bars. The mass flow rate of the refrigerant is 10 kg/min. A separate stream of air enters the heat exchanger at 37°C with a mass flow rate of 80 kg/min. Ignoring heat transfer from the outside of the heat exchanger and neglecting kinetic and potential energy effects, determine the exit air temperature, in °C.arrow_forwardThe figure belows shows three components of an air-conditioning system, where 105°F and 4.5 lb/s. Refrigerant 134a flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Modeling air as an ideal gas with constant cp = 0.240 Btu/lb · °R, determine the mass flow rate of the air, in lb/s.arrow_forward4.13arrow_forward
- 3.5 thermodynamicsarrow_forward4.10arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1./= constant. 4-1: heating at constant volume back to the initial conditions. Using file 3, which figure number is associated the process? ?arrow_forward
- The figure below shows a turbine-driven pump that provides water to a mixing chamber located dz = 45 m higher than the pump, where n = 80 kg/s. Steady-state operating data for the turbine and pump are labeled on the figure. Heat transfer from the water to its surroundings occurs at a rate of 2 kW. For the turbine, heat transfer with the surroundings and potential energy effects are negligible. Kinetic energy effects at all numbered states can be ignored. h = 417.69 kJ/kg Mixing chamber Ocy = 2 kW Steam P3 = 30 bar T; = 400°C dz Turt Pump P4 =5 bar -4 T = 180°C Saturated liquid water m, Pj = 1 bar Determine: (a) the magnitude of the pump power, in kW. (b) the mass flow rate of steam, in kg/s, that flows through the turbine.arrow_forwardThe figure belows shows three components of an air-conditioning system, where T3 = 95°F and m3 = 3 lb/s. Refrigerant 134a flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. m₁ = Saturated liquid R-134a T3, m3 i Throttling valve lb/s P4 = 60 lbf/in.² Air T₁=535°R Cp = 0.240 Btu/lb-ºR Fan wwww ²+² 2 T₂=528°R Wey=-0.2 hp Modeling air as an ideal gas with constant cp = 0.240 Btu/lb. °R, determine the mass flow rate of the air, i lb/s. Saturated vapor P5 P4 -Heat exchangerarrow_forwardI need to draw the graph also.arrow_forward
- 5. Two kilogram of certain gas with R = 0.218 kJ/kg-K undergoes a process and results to the following changes: AH = 2190 kJ, AU = 1460 kJ. E. If the process is internally reversible non-flow at constant pressure, what is the heat transferred during the process?arrow_forwardAfter graduation, you take a job with the Acme energy services company. Your first job is to purchase high efficiency heat pumps. The heat pumps employ mechanical power and a heat engine to provide heat at TH = 100°C. A low temperature heat sink at TC = 20ºC is also available. A salesman shows you two models. Performance data for each model operating at steady state are provided in the Figure belowarrow_forwardThe figure below shows a turbine-driven pump that provides water to a mixing chamber located dz= 5 m higher than the pump, where m˙=50 kg/s. Steady-state operating data for the turbine and pump are labeled on the figure. Heat transfer from the water to its surroundings occurs at a rate of 2 kW. For the turbine, heat transfer with the surroundings and potential energy effects are negligible. Kinetic energy effects at all numbered states can be ignored. Determine:(a) the magnitude of the pump power, in kW.(b) the mass flow rate of steam, in kg/s, that flows through the turbine.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY