FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A system executes a power cycle while receiving 900 Btu by heat transfer at a temperature of 900°R and discharging 800 Btu by heat
transfer at a temperature of 540°R. There are no other heat transfers.
Determine the cycle thermal efficiency. Use the Clausius Inequality to determine Ocycle, in Btu/°R. Determine if this cycle is internally
reversible, irreversible, or impossible.
Step 1
Determine the cycle thermal efficiency.
n =
i
%
A system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900oR and discharging 600 Btu by heat transfer at a temperature of 540oR. There are no other heat transfers.Determine the cycle thermal efficiency. Use the Clausius Inequality to determine σcycle, in Btu/oR. Determine if this cycle is internally reversible, irreversible, or impossible.
Three sub steps of a thermodynamic cycle are employed in order to change the state of
a gas from 1 bar, 1.5 cubic meter and internal energy of 512 kJ. The processes are:
1st step: Compression at constant PV to a pressure of 2 bar and internal energy of 690 kJ.
2nd step: A process where work transferred is zero and heat transferred is - 150 kJ.
3rd step: A process where work transferred is -50 kJ.
without KE and PE changes, determine:
a. heat transferred during 1st step (kJ)
b. heat transferred during 3rd step (kJ)
Knowledge Booster
Similar questions
- Q2/ A power cycle operating between two reservoirs receives energy Qi by heat transfer from a hot reservoir at T 1000K and rejects energy Q2 by heat transfer to a cold reservoir at Tz-200K For each of the following cases, determine whether the cycle operates reversibly, irreversibly, or is impossible. (a) QI = 500KJ, W 350KJ (b) Q1 = 1000KJ, Q2 200KJ (c) W= 800KJ, Q2 = 500KJ (d) 7 = 95 % %3D %3Darrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH QH Reservoir at T R1 lo ali R2 Qc Cold reservoir at Te W. cycle W cycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R. respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy QC by heat transfer to a reservoir at TC = 450°R. All energy transfers are positive in the directions of the arrows. Determine:(a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles.(b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 450°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forward
- An air conditioner operating at steady state maintains a dwelling at 20 C on a day when the outside temperature is 35 C. Energy is removed by heat transfer from the dwelling at a rate of 2800 J/s while the air conditioner's power input is 0.8 kw. (a) Determine the coefficient of performance of the air conditioner. (b) Determine the power input required if it was a Carnot refrigerator. English (United States) 目 98%arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH-1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Te - 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH lH R1 Reservoir Q at T 20 R2 lc Cold reservoir at Tc We cycle W Wcycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R, respectively. Also, determine the ratio of the network developed by the single cycle to the network developed by each of the two cycles, Wcycle-arrow_forwardThe refrigerator shown in the figure below operates at steady state with a coefficient of performance (COP) of 5.0 within a kitchen at 23 °C. The refrigerator rejects 4.8 kW by heat transfer to its surroundings from metal coils located on its exterior. Determine: (a) the power input, in kW.(b) the lowest theoretical temperature inside the refrigerator, in K.arrow_forward
- Two reversible power cycles are arranged in series. The first cycle receives energy by heat transfer from a reservoir at temperature TH and rejects energy to a reservoir at an intermediate temperature T. The second cycle receives the energy rejected by the first cycle from the reservoir at temperature T and rejects energy to a reservoir at temperature TC lower than T. Derive an expression for the intermediate temperature T in terms of TH and TC when,a. The net works of the two power cycles are equalb. The thermal efficiencies of the two power cycles are equalarrow_forwardA power cycle operates between hot and cold reservoirs at 500 K and 310 K. At steady state the cycle develops a power output of 0.1 MW. Determine the minimum theoretical rate at which energy is rejected by heat transfer to the cold reservoir in MW.arrow_forwardpls answer all the given thanksarrow_forward
- A system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900oR and discharging 600 Btu by heat transfer at a temperature of 540oR. There are no other heat transfers.Determine the cycle thermal efficiency. Use the Clausius Inequality to determine σcycle, in Btu/oR. Determine if this cycle is internally reversible, irreversible, or impossible.arrow_forwardI need some help in how to solve this problem. Any help will be appreciated. Thanksarrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Weycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Hot reservoir at T RI W. cycle Reservoir at T R2 Wcycle Cold reservoir at Te Determine: (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 500°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Woycle-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY