FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
To maintain a dwelling steadily at 68°F on a day when the outside temperature is 30°F, heating must be provided at an average rate of
300 Btu/min.
Determine the electrical power required, in kW, to deliver the heating using:
(a) electrical-resistance heating,
(b) a heat pump whose coefficient of performance is 3.5,
(c) a reversible heat pump operating between hot and cold reservoirs at 68°F and 30°F, respectively.
To maintain a dwelling steadily at 68°F on a day when the outside temperature is 30°F, heating must be provided at an average rate of
300 Btu/min.
Determine the electrical power required, in kW, to deliver the heating using:
(a) electrical-resistance heating,
(b) a heat pump whose coefficient of performance is 3.5,
(c) a reversible heat pump operating between hot and cold reservoirs at 68°F and 30°F, respectively.
Part A
Determine the electrical power required, in kW, to deliver the heating using electrical-resistance heating.
Wa
i
Save for Later
kW
Attempts: 0 of 4 used
Submit Answer
A heat pump with a coefficient of performance of 3.5 provides energy at an average rate of 70,000 kJ/h to maintain a building at 20 deg C on a day when the outside temperature is -5 deg C. If electricity costs 8.5 cents per kWh,
(a) determine the actual operating cost and the minimum theoretical operating cost, each in $/day.
(b) compare the results of part (a) with the cost of electrical-resistance heating.
Knowledge Booster
Similar questions
- A heat pump maintains a dwelling at 68°F. When operating steadily, the power input to the heat pump is 5 hp, and the heat pump receives energy by heat transfer from 55°F well water at a rate of 500 Btu/min. (a) Determine the coefficient of performance. (b) Evaluating electricity at $0.18 per kWh, determine the cost of electricity in a month when the heat pump operates for 300 hours. Part A Determine the coefficient of performance. y = iarrow_forwardAn air conditioner operating at steady state maintains a dwelling at 20 C on a day when the outside temperature is 35 C. Energy is removed by heat transfer from the dwelling at a rate of 2800 J/s while the air conditioner's power input is 0.8 kw. (a) Determine the coefficient of performance of the air conditioner. (b) Determine the power input required if it was a Carnot refrigerator. English (United States) 目 98%arrow_forwardA heat pump maintains a dwelling at 68°F. When operating steadily, the power input to the heat pump is 3 hp, and the heat pump receives energy by heat transfer from 55°F well water at a rate of 500 Btu/min. (a) Determine the coefficient of performance. (b) Evaluating electricity at $0.18 per kW · h, determine the cost of electricity in a month when the heat pump operates for 300 hours.arrow_forward
- (9) The coefficient of performance of a residential heat pump is 2.85. If the input power to this heat pump is 2.7 kW, Calculate the rate of heat supply to the house, in kJ/h.arrow_forwardpls answer the given thanksarrow_forwardA window air conditioner that consumes 1 kW of electricity when running and has a coefficient of performance of 3 is placed in the middle of a room and is plugged in. The rate of cooling or heating this air conditioner will provide to the air in the room when running is (a) 3 kJ/s, cooling (b) 1 kJ/s, cooling (c) 0.33 kJ/s, heating (d) 1 kJ/s, heating (e) 3 kJ/s, heatingarrow_forward
- By supplying energy to a house at a rate of 25,000 kJ/hr, a heat pump maintains the temperature of the dwelling at 20 C when the outside air is at -10 C. If electricity costs 8 cents per kW-hr, determine the minimum theoretical operating cost to heat the house for 24 hours. $1.97 O $1.37 $1.75 O $1.51 O$1.64arrow_forwardA heat pump cycle delivers energy by heat transfer to a dwelling at a rate of 40,000 Btu/h. The coefficient of performance of the cycle is 2.8. Evaluating electricity at $0.085 per kW•h, determine the cost of electricity during the heating season when the heat pump operates for 2000 hours.arrow_forwardheat pump with a coefficient of performance of 2.5 supplies energy to a house at a rate of 60,000 Btu/h. Determine (a) the electric pwer drawn by the heat pump and (b) the rate of heat absoption from the outside air.arrow_forward
- An air conditioner operating at steady state maintains a dwelling at 20°C on a day when the outside temperature is 40°C. Energy is removed by heat transfer from the dwelling at a rate of 3200 J/s while the air conditioner’s power input is 0.8 kW. Determine the coefficient of performance of the air conditioner. Determine the power input required by a reversible refrigeration cycle providing the same cooling effect while operating between hot and cold reservoirs at 40°C and 20°C, respectively, in kW.arrow_forwardDetermine the net power required to operate the heat pump, in kW. whose coefficient of performance of heat pump cycle is 2.5. the heat pump delivers energy to a dwelling at a heat transfer rate of 20 kWarrow_forward1. Is a temperature difference necessary to operate a heat engine? State why or why not. 2. Definitions of efficiency vary depending on how energy is being converted. Compare the definitions of efficiency for the human body and heat engines. How does the definition of efficiency in each relate to the type of energy being converted into doing work? 3. Why-other than the fact that the second law of thermodynamics says reversible engines are the most efficient-should heat engines employing reversible processes be more efficient than those employing irreversible processes? Consider that dissipative mechanisms are one cause of irreversibility. 1. (a) What is the efficiency of a cyclical heat engine in which 75.0 kJ of heat transfer occurs to the environment for every 95.0 kJ of heat transfer into the engine? (b) How much work does it produce for 100 k) of heat transfer into the engine? 2. The engine of a large ship does 2.00×10°J of work with an efficiency of 5.00%. (a) How much heat…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning