FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
In your own words, define efficiency as it applies to a device designed to perform an energy transformation.
An air conditioner operating at steady state maintains a dwelling at 20 C on a day when the outside
temperature is 35 C. Energy is removed by heat transfer from the dwelling at a rate of 2800 J/s while the
air conditioner's power input is 0.8 kw.
(a) Determine the coefficient of performance of the air conditioner.
(b) Determine the power input required if it was a Carnot refrigerator.
English (United States)
目 98%
An air conditioner operating at steady state maintains a dwelling at 20°C on a day when the outside temperature is 40°C. Energy is removed by heat transfer from the dwelling at a rate of 3200 J/s while the air conditioner’s power input is 0.8 kW.
Determine the coefficient of performance of the air conditioner.
Determine the power input required by a reversible refrigeration cycle providing the same cooling effect while operating between hot and cold reservoirs at 40°C and 20°C, respectively, in kW.
Knowledge Booster
Similar questions
- 3. An air conditioner removes heat steadily from a house at a rate of 750 klimin while drawing electric power at a rate of 6 kW. Determine (a) the COP of this air conditioner and (b) the rate of heat transfer to the outside air. (20R. 0 min 1arrow_forward(c) An air conditioner in a house removes heat steadily at a rate of 750 kJ/min while drawing electric power at a rate of 6 kW. Determine: (i) The COP of this air conditioner and; (ii) The rate of heat transfer to the outside air.arrow_forwardAs shown in the figure, an air conditioner operating at steady state maintains a dwelling at 70°F on a day when the outside temperature is 90°F. The rate of heat transfer into the dwelling through the walls and roof is 30,000 Btu/h and the net power input to the air conditioner compressor is 3 hp. Determine a. the coefficient of performance for the air conditioner b. power input required in hp c. coefficient of performance for a reversible air conditioner providing the same cooling effect while operating between the same cold and hot temperatures.arrow_forward
- I need some help in how to solve this problem. Any help will be appreciated. Thanksarrow_forwardA heat engine must provide 1000 Watts of power. Assuming it has an efficiency of 0.32, how much heat must be supplied to the engine, in Watts?arrow_forwardKelvin-Planck statement defines the Second law of thermodynamics as a. It is impossible to construct a machine that will operate in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the surroundings. b. It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body. c. It is possible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body. d. It is possible to construct a machine that will operate in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the surroundings.arrow_forward
- A heat pump with a coefficient of performance of 3.5 provides energy at an average rate of 70,000 kJ/h to maintain a building at 20 deg C on a day when the outside temperature is -5 deg C. If electricity costs 8.5 cents per kWh, (a) determine the actual operating cost and the minimum theoretical operating cost, each in $/day. (b) compare the results of part (a) with the cost of electrical-resistance heating.arrow_forwardA heat pump maintains a dwelling at 68°F. When operating steadily, the power input to the heat pump is 5 hp, and the heat pump receives energy by heat transfer from 55°F well water at a rate of 500 Btu/min. (a) Determine the coefficient of performance. (b) Evaluating electricity at $0.18 per kWh, determine the cost of electricity in a month when the heat pump operates for 300 hours. Part A Determine the coefficient of performance. y = iarrow_forwardAn air conditioner is a device used to cool the inside of a home. It is, in essence, a refrigerator in which mechanical work is done and heat removed from the (cooler) inside and rejected to the (warmer) outside. A home air conditioner operating on a reversible Carnot cycle between the inside, absolute temperature T2, and the outside, absolute tempera- ture T1 > T2, consumes P joules/sec from the power lines when operating continuously. (a) In one second, the air conditioner absorbs Q2 joules from the house and rejects Q1 joules outdoors. Develop a formula for the efficiency ratio Q2/P in terms of T1 and T2. (b) Heat leakage into the house follows Newton's law Q = A(T, – T2). Develop a formula for T, in terms of T1, P, and A for continuous operation of the air conditioner under constant outside temperature T and uniform (in space) inside temperature T2. (c) The air conditioner is controlled by the usual on-off thermostat and it is observed that when the thermostat set at 20°C and an…arrow_forward
- A heat pump cycle is used to maintain the interior of a building at 25°C. At steady state, the heat pump receives energy by heat transfer from well water at 9°C and discharges energy by heat transfer to the building at a rate of 120,000 kJ/h. Over a period of 14 days, an electric meter records that 1500 kW · h of electricity is provided to the heat pump.Determine:(a) the amount of energy that the heat pump receives over the 14-day period from the well water by heat transfer, in kJ.(b) the heat pump’s coefficient of performance.(c) the coefficient of performance of a reversible heat pump cycle operating between hot and cold reservoirs at 25°C and 9°C.arrow_forwardThe larger the specific volume, the greater the work produced (or consumed) by a steady-flow device.arrow_forwardBetween a heat source at temperature T and a low-temperature heat well at 280 K power cycle is working. In steady state, the cycle produces 50 kW of work, while the heat well is 1000 kl/min. heats up. Determine the minimum theoretical value for T in K (Kelvin).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY