FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
An air conditioner is a device used to cool the inside of a home. It is, in
essence, a refrigerator in which mechanical work is done and heat removed
from the (cooler) inside and rejected to the (warmer) outside.
A home air conditioner operating on a reversible Carnot cycle between
the inside, absolute temperature T2, and the outside, absolute tempera-
ture T1 > T2, consumes P joules/sec from the power lines when operating
continuously.
(a) In one second, the air conditioner absorbs Q2 joules from the house
and rejects Q1 joules outdoors. Develop a formula for the efficiency ratio
Q2/P in terms of T1 and T2.
(b) Heat leakage into the house follows Newton's law Q = A(T, – T2).
Develop a formula for T, in terms of T1, P, and A for continuous operation
of the air conditioner under constant outside temperature T and uniform
(in space) inside temperature T2.
(c) The air conditioner is controlled by the usual on-off thermostat
and it is observed that when the thermostat set at 20°C and an…
Find the mean effective pressure of the thermodynamic cycle shown in the figure below.
Air within a piston-cylinder assembly executes a Carnot heat pump cycle, as shown in the figure below. For the cycle, TH = 600 K and TC = 300 K. The energy rejected by heat transfer at 600 K has a magnitude of 1000 kJ per kg of air. The pressure at the start of the isothermal expansion is 325 kPa.
Assuming the ideal gas model for the air, determine:
(a) the magnitude of the net work input, in kJ per kg of air, and
(b) the pressure at the end of the isothermal expansion, in kPa.
Knowledge Booster
Similar questions
- A power cycle operating between two reservoirs receives energy Qu by heat transfer from a hot reservoir at TH = 2000 K and rejects energy Qc by heat transfer to a cold reservoir at Tc = 400 K. For the cases below you will be asked to determine the cycle n and whether the cycle operates Reversibly, Irreversibility, or is Impossible. Сycle Сycle Сycle Assume: п — пСarnot n пСarnot 1. The maximum thermal efficiency nCarnot for the cycle is equal to а. 0.2 b. 0.8 с. 1.0 d. none of the above. 2. If QH = 1100 kJ and the Weycle = 900 kJ then the cycle is Reversible b. Irreversible c. Impossible а. d. none of the above. 3. If QH = 1000 kJ and Qc = 200 kJ then the cycle is a. Reversible b. Irreversible c. Impossible d. none of the above. 4. If Wq a. Reversible b. Irreversible c. Impossible d. none of the above. суcle 1400 kJ and Qc= 600 kJ then the cycle is 5. If n = 50% then the cycle is a. Reversible b. Irreversible c. Impossible d. none of the above.arrow_forwardSoleve the questionarrow_forwardAn ideal gas within a piston–cylinder assembly undergoes a Carnot refrigeration cycle, as shown in the figure below. The isothermal compression occurs at 325 K from 2 bar to 6 bar. The isothermal expansion occurs at 275 K. Determine: (a) the coefficient of performance, (b) the heat transfer to the gas during the isothermal expansion, in kJ per kmol of gas, (c) the magnitude of the net work input, in kJ per kmol of gas.arrow_forward
- pls answer all the given thanksarrow_forwardThe first step of a thermodynamic cycle is an isobaric process with increasing volume. The second is an isochoric process, with decreasing pressure. The last step may be either an isothermal or adiabatic process, ending at the starting point of the isobaric process. Sketch a graph of these two possibilities, and comment on which will have greater net work per cycle.arrow_forwardAn ideal gas within a piston-cylinder assembly undergoes a Carnot refrigeration cycle, as shown in the figure below. The isothermal compression occurs at 325 K from 2 bar to 8 bar. The isothermal expansion occurs at 275 K. Determine: TH p-v diagram for a Carnot gas refrigeration or heat pump cycle. (a) the coefficient of performance, (b) the heat transfer to the gas during the isothermal expansion, in kJ per kmol of gas, (c) the magnitude of the net work input, in kJ per kmol of gas.arrow_forward
- As shown in the figure, an air conditioner operating at steady state maintains a dwelling at 70°F on a day when the outside temperature is 90°F. The rate of heat transfer into the dwelling through the walls and roof is 30,000 Btu/h and the net power input to the air conditioner compressor is 3 hp. Determine a. the coefficient of performance for the air conditioner b. power input required in hp c. coefficient of performance for a reversible air conditioner providing the same cooling effect while operating between the same cold and hot temperatures.arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1.7= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the net work done in joules?arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m³/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1./= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the work done for the expansion process in joules to 2 decimal places ?arrow_forward
- A closed system undergoes a cycle consisting of three process 1-2, 2-3 and 3-1. Given that Q12 = 30kJ, Q23 = 10 kJ, 1w2 = 5 kJ, 3w2 = 5 kJ and DE31 = 15 kJ, Evaluate Q31, w23, DE12 and DE23.arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1./= constant. 4-1: heating at constant volume back to the iniüal conditions. Calculate the work done for the constant volume heating process? Moving to another question will save this response. «< Questio acar A s P I R Earrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH-1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Te - 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH lH R1 Reservoir Q at T 20 R2 lc Cold reservoir at Tc We cycle W Wcycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R, respectively. Also, determine the ratio of the network developed by the single cycle to the network developed by each of the two cycles, Wcycle-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY