FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Heat transfer through a temperature difference is irreversible,
An oil pump operating at steady state delivers oil at a rate of 6 kg/s through a 2.5-cm-
diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 1360
kg/m³ and experiences a pressure rise from inlet to exit of 2.75 bar. There is no significant
elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat
transfer between the pump and its surroundings is negligible, and there is no significant
change in temperature as the oil passes through the pump.
a. Determine the velocity of the oil at the exit of the pump, in m/s.
b. Determine the power required for the pump, in W.
Oil Pump
Mflow=6kg/s
Poil 1360 kg/m³
P2-p1-2.75 bar
T₂-T₁=0
D=2.5 cm
12
Knowledge Booster
Similar questions
- Exercise 5.50 The refrigerator shown in Fig operates at Refrigerator B = 4.5 steady state with a coefficient of performance of 4.5 and a power input of 0.8 kW. Energy is rejected from the refrigerator to the surroundings at 20°C by heat transfer from metal coils whose average surface temperature is 28°C. Surroundings, 20°C - Coils, 28°C Determine (a) the rate energy that is rejected, in kW. (b) the lowest theoretical temperature inside the refrigerator, in K. (c) the maximum theoretical power, in kW, that could be developed by a power cycle operating between the coils and the surroundings. Would you recommend making use of this opportunity for developing power? 0.8 kW 49 Chaplerarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 12 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 55 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lbf/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.arrow_forwardThe irreversibility associated with a student studying and watching a movie on television, each for two hours.arrow_forward
- Liquid flows at steady state at a rate of 2 lb/s through a pump, which operates to raise the elevation of the liquid 100 ft from control volume inlet to exit. The liquid specific enthalpy at the inlet is 40.09 Btu/lb and at the exit is 40.94 Btu/lb. The pump requires 3 Btu/s of power to operate. If kinetic energy effects are negligible and gravitational acceleration is 32.174 ft/s2, the heat transfer rate associated with this steady state process is most closely: A) 2.02 Btu/s from the liquid to the surroundings. B) 3.98 Btu/s from the surroundings to the liquid. C) 4.96 Btu/s from the surroundings to the liquid. D) 1.04 Btu/s from the liquid to the surroundings.arrow_forwardAn oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Determine the velocity of the oil at the exit of the pump, in ft/s. Your answer is correct. V₂ = 26.192 Hint Step 2 * Your answer is incorrect. Win ft/s Determine the power required for the pump, in hp. i7.73 hp Attempts: 1 of 4 usedarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Your answer is correct. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = 26.192 Hint Step 2 ft/s * Your answer is incorrect. Determine the power required for the pump, in hp. i 1.49595 hp Attempts: 1 of 4 usedarrow_forward
- An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Determine the power required for the pump, in hp.arrow_forward5.45 WP As shown in Fig. P5.45, an air conditioner operating at steady state maintains a dwelling at 70°F on a day when the outside temperature is 90°F. If the rate of heat transfer into the dwelling through the walls and roof is 30,000 Btu/h, might a net power input to the air conditioner compressor of 3 hp be sufficient? If yes, determine the coefficient of performance. If no, determine the minimum theoretical power input, in hp.arrow_forwardAn oil pump operating at steady state delivers oil at a rate of 13 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 85 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Your answer is correct. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = 28.064 Hint Step 2 * Your answer is incorrect. ft/s Determine the power required for the pump, in hp. Win = 1.60155105 eTextbook and Media hp Attempts: 1 of 4 usedarrow_forward
- An oil pump operating at steady state delivers oil at a rate of 11 lb/s through a 1-in-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 55 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 * Your answer is incorrect. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = i 32.08 ft/sarrow_forward5.12arrow_forward7.25 As shown in Fig. P7.25, a 1-lb metal sphere initially at 2000°R is removed from an oven and quenched by immersing it in a closed tank containing 25 lb of water initially at 500°R. Each substance can be modeled as incompressible. An appropriate constant specific heat for the water is c 1.0 Btu/lb °R, and an appropriate value for the metal is cm = 0.1 Btu/lb oR. Heat transfer from the tank contents can be neglected. Determine the exergy destruction, in Btu. Let To = 77°F. System boundary Metal sphere: Tmi=2000°R m=0.1 Btu/lb R mm= 1 lb Water: Twj=500°R =1.0 Btu/lb R m 25 lb FIGURE P7.25arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY