FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Problem 3.091 SI
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 8 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant.Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.
A mole of ideal gas at state 1(P=1.00 bar, T=25.0° C, V=0.02479 m³) underwent two thermodynamic paths: (Path A) heating at constant volume to 1490.75K followed by (Path B ) cooling at constant pressure to reach state 2(P=5.00 bar, T=25.0 ° , V=0. 00496 m³). Calculate for the change of in internal energy, change in enthalpy, heat and work for the whole thermodynamic process. The specific heat of an ideal gas at constant pressure (Cp) is 29.099 J/mol-K and it's specific heat at constant volume (Cv) is 20.785 J/mol-k
Complete the following for Table 1: H20 and show the process on a T-v or P-v diagram for
each of the phase described.
On a T-v or P-v diagram, sketch for the following process:
- From state 1→ state 2
- From state 3 → state 4
- From state 4 → state 5
Table 1
v,
m/kg kJ/kg
u,
kJ/kg kJ/kg.K
State
P,
т,
X,
h,
s,
Phase
КРа
°C
%
1
800
719.97
2
1750
6.3877
3
69.09
4.832
1
4
2000
400
500
230
5.
Knowledge Booster
Similar questions
- 3.6 WP For H,0, determine the specified property at the indicated state. a. T = 140°C, v = 0.5 m³/kg. Find p, in bar b. p = 30 MPa, T = 100°C. Find v, in m³/kg. c. p = 10 MPa, T = 485°C. Find v, in m³/kg. d. T = 80°C, x = 0.75. Find p, in bar, and v, in m³/kg.arrow_forward3.21. The state of an ideal gas with Cp = (5/2)R is changed from P=1 bar and V = 12 m to P- 12 bar and V =1 m' by the following mechanically reversible processes: (a) Isothermal compression. (b) Adiabatic compression followed by cooling at constant pressure. atni (c) Adiabatic compression followed by cooling at constant volume.ro (d) Heating at constant volume followed by cooling at constant pressure. (e) Cooling at constant pressure followed by heating at constant volume. ad y Calculate Q. W, AU, and AH for each of these processes, and sketch the paths of all processes on a single PV diagram. owlearrow_forwardFor H₂O, determine the specific volume at each of the indicated state, in m³/kg. (a) T = 600 ˚C, p = 20 MPa. (b) T = 80 °C, p = 20 MPa. (c) T = 60 °C, p = 2.5 MPa. Part A Determine the specific volume, in m³/kg, for state (a). m³/kg V = Part B Determine the specific volume, in m³/kg, for state (b). m³/kg V = Part C Determine the specific volume, in m³/kg, for state (c). m³/kg V =arrow_forward
- ONLY B,C,D ( NEED NEAT HANDWRITTEN SOLUTION ONLY OTHERWISE DOWNVOTE).arrow_forwardFor H₂O, determine the specified property at the indicated state. (a) T = 140°C, v = 0.5 m³/kg. Find p, in bar. (b) p = 30 MPa, T = 160°C. Find v, in m³/kg. (c) p = 10 MPa, T = 400°C. Find v, in m³/kg. (d) T = 80°C, x = 0.8. Find p, in bar, and v, in m³/kg.arrow_forwardA certain ideal gas has the following properties: Molecular Mass, M = 24.943416 kg/kmole and Cvo = 1.000 kJ/ºK/kg. Determine Cpo in kJ / °K / kg.arrow_forward
- A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200°C, 1 bar. During an interval of 10 minutes, the paddle wheel transfers energy to the air at a rate of 1 kW. During this time interval, the air also receives energy by heat transfer at a rate of 0.5 kW. These are the only energy transfers. Assume the ideal gas model for the air, and no overall changes in kinetic or potential energy. Do not assume specific heats are constant. Determine the change in specific internal energy for the air, in kJ/kg, and the final temperature of the air, in °C.arrow_forward1. Butane (MW=58), is a type of hydrocarbon commonly used as fuel for portable stoves. The gas is held in a 20 Liter cylindrical container. Butane is stored initially at a pressure of 15 bar and at room temperature of 30°C. If the pressure limit for the container, (also known as bursting pressure) is 120 bar, determine the maximum temperature allowed (in Kelvin) for the gas inside, also, determine the mass (in kg) of butane.arrow_forward2. Given a closed container of volume 1 L containing 50 g of helium gas, calculate the following: a. The pressure at T = 6 K, assuming that the gas is an ideal gas. b. The pressure at T of state. = 6 K, assuming that the gas obeys van der Waal's equation c. The pressure at T 6 K, assuming that the gas obeys the virial equation of state truncated after the second term. = d. The state of the fluid at T = 4.2 K. (Hint: 4.2 K is below T. and 50 kg/m³ is greater than p, @ 4.2 K.)arrow_forward
- -Thermodynamics- determine the properties of the saturated liquid at 10 bar. Locate the state on a T-S diagram.arrow_forwardProblem 1 For H,O, determine the specified property at the indicated state. Locate the state on a sketch of the T-v diagram. (a) T = 140°C, v = 0.5 m3/kg. Find T, in °C. (b) p = 30 MPa, T = 100 ° C. Find v , in m3/kg. (c) p = 10 MPa, T = 485 ° C. Find v , in m3/kg. (d) T-80 ° C, x 5 0.75. Find p, in bar, and, v in m2/kg %3D %3D %3Darrow_forwardQUESTION 47 Carbon dioxide (molar mass 44 kg/kmol) expands reversibly in a perfectly thermally insulated cylinder from 3.7 bar, 220 UC to a volume of 0.085 m3. If the initial volume occupied was 0.02 m, calculate the adiabatic index to 1 decimal place. Assume nitrogen to be a perfect gas and take cv = 0.63 k J/kg K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY