STRUCTURAL ANALYSIS (LL)
STRUCTURAL ANALYSIS (LL)
6th Edition
ISBN: 9780357030967
Author: KASSIMALI
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 46P
To determine

Find the forces in the members of the truss.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given information:

Apply the sign conventions for calculating reactions, forces and moments using the three equations of equilibrium as shown below.

  • For summation of forces along x-direction is equal to zero (Fx=0), consider the forces acting towards right side as positive (+) and the forces acting towards left side as negative ().
  • For summation of forces along y-direction is equal to zero (Fy=0), consider the upward force as positive (+) and the downward force as negative ().
  • For summation of moment about a point is equal to zero (Matapoint=0), consider the clockwise moment as negative and the counter clockwise moment as positive.

Method of joints and section.

The negative value of force in any member indicates compression (C) and the positive value of force in any member indicates Tension (T).

Calculation:

Show the free body diagram of the truss as shown in Figure 1.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  1

Refer Figure 1.

Consider the horizontal and vertical reactions at A are Ax and Ay.

Consider the vertical reaction at E is Ey.

Take the sum of the forces in the horizontal direction as zero.

Fx=0Ax+10+10=0Ax=20k

Take the sum of the forces in the vertical direction as zero.

Fy=0Ay+Ey=40+30Ay+Ey=70k        (1)

Take the sum of the moment about point A as zero.

MA=0[(10×20)(10×40)(40×30)(30×45)+(Ey×60)]=0Ey=3,15060Ey=52.5k

Substitute 52.5k for Ey in Equation (1).

Ay+52.5=70Ay=7052.5Ay=17.5k

Calculate the value of the angle θ as follows:

tanθ=(4015)θ=tan1(4015)θ=69.44°

Consider a section a-a passing through the members BC, CG, and JK.

Show the portion of the truss to the left of the section a-a as shown in Figure 2.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  2

Refer Figure 2.

Take the sum of the moment about C as zero.

MF=0(10×20)(10×40)(17.5×30)FJK×40=0FJK=112540FJK=28.13k(C)

JOINT A.

Show the joint as shown in Figure 3.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  3

Refer Figure 3.

For Equilibrium of forces,

Fy=0FAFsin(69.44°)+17.5=0FAF=17.5sin(69.44°)FAF=18.69k(C)

Fx=020+FAB+FAFcos(69.44°)=020+FAB+(18.69)cos(69.44°)=0FAB=18.69cos(69.44°)+20FAB=26.56k(T)

JOINT J.

Show the joint as shown in Figure 4.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  4

Refer Figure 4.

For Equilibrium of forces,

Fy=0FJFsin(69.44°)FJGsin(69.44°)=0FJF=FJG        (2)

Fx=010FJFcos(69.44°)+FJK+FJGcos(69.44°)=010FJFcos(69.44°)+(28.13)+FJGcos(69.44°)=010(FJG)cos(69.44°)+(28.13)+FJGcos(69.44°)=0

10+0.3511FJG28.13+0.3511FJG=0FJG=18.130.7022FJG=25.81k(T)

Substitute 25.81k for FJG in Equation (2).

FJF=25.81kFJF=25.81k(C)

JOINT F.

Show the joint as shown in Figure 5.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  5

Refer Figure 5.

For Equilibrium of forces,

Fy=0FFAsin(69.44°)FFBsin(69.44°)+FFJsin(69.44°)=0FFAFFB+FFJ=0(18.69)FFB+(25.81)=0FFB=7.12k(C)

Fx=010+FFJcos(69.44°)+FFBcos(69.44°)+FFGFFAcos(69.44°)=010+(25.81)cos(69.44°)+(7.12)cos(69.44°)+FFGFFAcos(69.44°)=0[10+(25.81)cos(69.44°)+(7.12)cos(69.44°)+FFG(18.69)cos(69.44°)]=0FFG+5=0FFG=5k(C)

JOINT G.

Show the joint as shown in Figure 6.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  6

Refer Figure 6.

For Equilibrium of forces,

Fx=0FGFFGJcos(69.44°)FGBcos(69.44°)+FGCcos(69.44°)=0(5)25.81cos(69.44°)7.12cos(69.44°)+FGCcos(69.44°)=025.817.12+FGC=5cos(69.44°)25.817.12+FGC=14.237FGC=18.69k(T)

Fy=0FGBsin(69.44°)FGCsin(69.44°)+FGJsin(69.44°)=0FGBFGC+FGJ=0FGB18.69+25.81=0FGB=7.12k(T)

JOINT E.

Show the joint as shown in Figure 7.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  7

Refer Figure 7.

For Equilibrium of forces,

Fy=052.5+FEIsin(69.44°)=0FEI=52.5sin(69.44°)FEI=56.07k(C)

Fx=0FED=FEIcos(69.44°)FED=(56.07)cos(69.44°)FED=19.69k(T)

JOINT K.

Show the joint as shown in Figure 8.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  8

Refer Figure 8.

For Equilibrium of forces,

Fx=0FKJFKHcos(69.44°)+FKIcos(69.44°)=0(28.13)FKHcos(69.44°)+FKIcos(69.44°)=0FKH+FKI=28.13cos(69.44°)FKH+FKI=80.09        (3)

Fy=0FKHsin(69.44°)=FKIsin(69.44°)FKH=FKIFKI+FKH=0        (4)

Add Equation (3) and (4).

2FKI=80.09FKI=40.045k(C)

Subtract Equation (4) and (3).

2FKH=80.09FKH=40.045k(T)

JOINT I.

Show the joint as shown in Figure 9.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  9

Refer Figure 9.

For Equilibrium of forces,

Fy=0FIDsin(69.44°)FIEsin(69.44°)+FIKsin(69.44°)=0FIDFIE+FIK=0FID(56.07)+(40.05)=0FID=16.02k(T)

Fx=0FIHFIDcos(69.44°)FIKcos(69.44°)+FIEcos(69.44°)=0FIH16.02cos(69.44°)(40.05)cos(69.44°)+(56.07)cos(69.44°)=0FIH=[16.02(40.05)+(56.07)]cos(69.44°)FIH=11.25k(C)

JOINT H.

Show the joint as shown in Figure 10.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  10

Refer Figure 10.

For Equilibrium of forces,

Fx=0FHDcos69.44°+FHKcos69.44°FHCcos69.44°+FHI=0FHDcos69.44°+40.05cos69.44°FHCcos69.44°11.25=0FHD+40.05FHC=11.25cos69.44°FHDFHC=8.015        (5)

Fy=0FHDcos69.44°+FHKcos69.44°FHCcos69.44°=0FHDcos69.44°+40.05cos69.44°FHCcos69.44°=0FHD+40.05FHC=0FHDFHC=40.05        (6)

Add Equation (5) and (6).

2FHC=48.065FHC=24.03k(T)

Subtract Equation (5) from Equation (6).

2FHD=32.035FHD=16.02k(T)

JOINT B.

Show the joint as shown in Figure 11.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  11

Refer Figure 11.

For Equilibrium of forces,

Fx=0FBFcos(69.44°)FBA=FBC+FBGcos(69.44°)(7.12)cos(69.44°)26.56=FBC+(7.12)cos(69.44°)26.56=FBCFBC=26.56k(C)

JOINT D.

Show the joint as shown in Figure 12.

STRUCTURAL ANALYSIS (LL), Chapter 4, Problem 46P , additional homework tip  12

Refer Figure 12.

For Equilibrium of forces,

Fx=0FDHcos(69.44°)+FDC=FDE+FDIcos(69.44°)16.02cos(69.44°)+FDC=19.69+16.02cos(69.44°)FDC=19.69k(T)

Show the forces in the members of the truss as shown in Table 1.

MemberForce (k)
DC19.69k(T)
BC26.56k(C)
HD16.02k(T)
HC24.03k(T)
IH11.25k(C)
ID16.02k(T)
KH40.045k(T)
KI40.045k(C)
ED19.69k(T)
EI56.07k(C)
GB7.12k(T)
GC18.69k(T)
FG5k(C)
FB7.12k(C)
JF25.81k(C)
JG25.81k(T)
AB26.56k(T)
AF18.69k(C)
JK28.13k(C)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the updated network. Calculate the new project completion date. Check if there are changes to the completion date and/or to the critical path. Mention the causes for such changes, if any. New network based on the new information received after 15 days (Correct calculations, professionally done). Mention if critical path changes or extended. Write causes for change in critical path or extension in the critical path.
The single degree of freedom system shown in Figure 3 is at its undeformed position. The SDOF system consists of a rigid beam that is massless. The rigid beam has a pinned (i.e., zero moment) connection to the wall (left end) and it supports a mass m on its right end. The rigid beam is supported by two springs. Both springs have the same stiffness k. The first spring is located at distance L/4 from the left support, where L is the length of the rigid beam. The second spring is located at distance L from the left support.
For the system shown in Figure 2, u(t) and y(t) denote the absolute displacements of Building A and Building B, respectively. The two buildings are connected using a linear viscous damper with damping coefficient c. Due to construction activity, the floor mass of Building B was estimated that vibrates with harmonic displacement that is described by the following function: y(t) = yocos(2πft). Figure 2: Single-degree-of-freedom system in Problem 2. Please compute the following related to Building A: (a) Derive the equation of motion of the mass m. (20 points) (b) Find the expression of the amplitude of the steady-state displacement of the mass m. (10 points
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,