Concept explainers
As a high-speed spaceship flies past you, it fires a strobe light that sends out a pulse of light in all directions. An observer aboard the spaceship measures a spherical wave front that spreads away from the spaceship with the same speed c in all directions. (a) What is the shape of the wave front that you measure? (i) Spherical; (ii) ellipsoidal, with the longest axis of the ellipsoid along the direction of the spaceship’s motion; (iii) ellipsoidal, with the shortest axis of the ellipsoid along the direction of the spaceship’s motion; (iv) not enough information is given to decide. (b) As measured by you, does the wave front remain centered on the spaceship?
Learn your wayIncludes step-by-step video
Chapter 37 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
College Physics
Life in the Universe (4th Edition)
Lecture- Tutorials for Introductory Astronomy
Physics (5th Edition)
College Physics (10th Edition)
- An observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P26.46. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft? Figure P26.46arrow_forwardWhat is the frequency of a red laser beam, with a wavelength of 670 nm, which your astronomy instructor might use to point to slides during a lecture on galaxies?arrow_forwardWhen high-energy charged particles move through a transparent medium with a speed greater than the speed of light in that medium, a shock wave, or bow wave, of light is produced. This phenomenon is called the Cerenkov effect. When a nuclear reactor is shielded by a large pool of water, Cerenkov radiation can be seen as a blue glow in the vicinity of the reactor core due to high-speed electrons moving through the water as shown. In a particular case, the Cerenkov radiation produces a wave front with an apex half-angle of 53.0°. Calculate the speed of the electrons in the water. The speed of light in water is 2.25 × 108 m/s.arrow_forward
- High-Energy Cancer Treatment. Scientists are working on a new technique to kill cancer cells by zapping them with ultrahighenergy (in the range of 1012 W) pulses of light that last for an extremely short time (a few nanoseconds). These short pulses scramble the interior of a cell without causing it to explode, as long pulses would do. We can model a typical such cell as a disk 5.0 um in diameter, with the pulse lasting for 4.0 ns with an average power of 2.0 * 1012 W. We shall assume that the energy is spread uniformly over the faces of 100 cells for each pulse. (a) How much energy is given to the cell during this pulse? (b) What is the intensity (in W/m2) delivered to the cell? (c) What are the maximum values of the electric and magnetic fields in the pulse?arrow_forwardA distant star is traveling directly away from Earth with a speedof 49,500 km>s. By what factor are the wavelengths in this star’sspectrum changed?arrow_forwardCombing your hair leads to excess electrons on the comb. At what frequency f, in hertz, would you have to move the comb up and down to produce red light, of wavelength 600 nm?arrow_forward
- A galaxy in the constellation Ursa Major is receding from Earth at 15,000 km/s. If one of the characteristic wavelengths of the light which the galaxy emits is 550 nm, what is the corresponding wavelength measured by astronomers on Earth? Also, calculate the red shift parameter z of this galaxy.arrow_forwardThe light from a supernova explosion is measured on a spacecraft moving towards the exploding star. Which of the following would be observed? The apparent frequency would appear to be higher than for a stationary observer. The apparent wavelength would appear to be shorter than for a stationary observer. The apparent speed of the light would be higher than for a stationary observer. a I only b II only c I and II only d I and III onlyarrow_forwardFrom your spacecraft at Mars, a basalt lava flow is 315 km below. a) What is the range delay time of the reflection caused by the ground? b) After moving along track in your orbit, the lava flow is still 315 km below, but there is now 80 m of ice (ɛ=3.15) on top of the ground. What is the new range delay time of the lava reflection? c) Does the returned signal return earlier or later than if there were no ice present? Why? 5:arrow_forward
- J33arrow_forwardWhat are the energy and momentum of a photon of red light of wavelength 620 nanometers (nm)? What is the wavelength (in nm) of photons of energy 2.40 eV?arrow_forwardAssuming that Eq. 37-36 holds, find how fast you would have to go through a red light to have it appear green. Take 620 nm as the wavelength of red light and 540 nm as the wavelength of green light.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning