If you push two atoms together to form a molecule, the exclusion principle results in a repulsive interaction between the atoms. How does this repulsion come about?
How does the repulsion as a result of exclusion principle come about between two atoms when they are pushed together to form a molecule.
Answer to Problem 1FTD
The repulsive force according to the exclusion principle results from the overlapping of the electrons belonging to the two atoms.
Explanation of Solution
Pauli Exclusion Principle states that no two electrons in an atom or molecule can have the same four electronic quantum numbers. In other words only two electrons can be in the same orbital of an atom or molecule with one electron having spin up and other having spin down.
Although individual atoms are electrically neutral, the distribution of charge within them gives rise to attractive or repulsive forces. The repulsive force results from the overlapping of the electrons belonging to the two atoms. In accordance with the Exclusion principle, two electrons cannot occupy the same state.
Thus when the atoms are pushed together so that electron wave functions would begin to overlap and occupy the same region of space, the electron clouds of the atoms have to be distorted to avoid the violation of the exclusion principle. This will require energy so that work has to be done in bringing them together which implies there exists a repulsive force.
Conclusion:
Thus the repulsive force according to the exclusion principle results from the overlapping of the electrons belonging to the two atoms.
Want to see more full solutions like this?
Chapter 37 Solutions
Essential University Physics (3rd Edition)
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Microbiology: An Introduction
Campbell Biology in Focus (2nd Edition)
Cosmic Perspective Fundamentals
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- You are preparing to compete in the Physics Olympics. Your instructor is coaching you by providing you with challenging problems of the type you might see on an Olympics exam. He comes up with the following problem and gives you 15 minutes to solve it: Imagine a perfectly rigid HCl molecule that does not stretch as it rotates. The equilibrium separation of its ions is 0.127 5 nm. There are two isotopes for chlorine on the sample, Cl-35 and Cl-37. This results in double peaks in the molecular spectrum as shown. (a) Find an expression for the difference in the frequency between the peaks to the right of the gap as a function of the masses of the two chlorine isotopes and the quantum number J. (b) Estimate the difference in frequency numerically for J = 0, without consulting tables. Quick! Get to work!arrow_forwardIf the bonding energy, in terms of (r), between two ions is ( number. a) Find the repulsive and attractive forces between the two ions. b) If the bonding energy between the two ions at the equilibrium state is given as ny r+1), x and y are constant and n is an integer Find the smallest distance between the two ions to achieve the state of equilibrium. (x1-n \ny, 1-narrow_forwardA water molecule consists of an oxygen atomwith two hydrogen atoms bound to it. Theangle between the two bonds is 106◦ If each bond is 0.128 nm long, how far fromthe oxygen atom is the center of mass of themolecule? Take the mass of an oxygen atomto be 16 times the mass of a hydrogen atom.Answer in units of nm.arrow_forward
- Nanotechnology, the field of trying to build ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body's oxygen transporters. For example, nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person's bloodstream. If the person needed additional oxygen-due to a heart attack perhaps, or for the purpose of space travel-these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 23 nanometers. A) What is the volume of one nanocontainer? (Ignore the thickness of the nanocontainer's wall.) B)Suppose that each nanocontainer could contain pure oxygen pressurized to a density of 85 g/Lg/L . How many grams of oxygen could be contained by each nanocontainer?…arrow_forwardNanotechnology, the field of trying to build ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body's oxygen transporters. For example, nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person's bloodstream. If the person needed additional oxygen-due to a heart attack perhaps, or for the purpose of space travel-these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 23 nanometers. A)What is the volume of one nanocontainer? B)Suppose that each nanocontainer could contain pure oxygen pressurized to a density of 85 g/Lg/L . How many grams of oxygen could be contained by each nanocontainer? C)Normal air contains about 0.28 gg of oxygen per…arrow_forwardAn isolated LiCl molecule has its chloride ion (mass = 35 u) at x= 0 pm , and its lithium ion (7 u) at x = 202 pm. Where is the LiCl molecule's mass centered? 40.4 pm O 101 pm O o pm O +33.7 pm O 202 pm cannot determine with the information givenarrow_forward
- (b) Describe the nature and origin of various forces existing between the atoms of a crystal. Explain the formation of a stable bond using the potential energy versus interatomic distance curve. Assume that the potential energy of two particles in the field of each other is given by U(R) = - R where A and B are constants. R9 (i) Show that the particles form a stable compound for R= R. = (9B/A)/8 (R, is equilibrium separation) i) Show that for stable configuration, the energy of attraction is nine times the energy of repulsion. 8A (iii) Show that the potential energy of the system under stable configuration is 9Rearrow_forwardCan someone show step by step solution? thanksarrow_forwardCalculate the y-component of the center of mass of the following molecule. Answer in Angstroms (Å), a distance unit. The atomic mass unit is u. (Note: the atoms used here might not exist in nature.) • e = 1.3 Å %3D • m = 5 u • M = 14 u • e = 98° %3D m Ө/2 Ө/2arrow_forward
- Binding in solids Calculate the force of attraction between a Ca2 and an O2 ions where their centers are separated by a distance of 1.25 nm.arrow_forwardThe PN junction of II has a structure given by the following the P doping 1016cm³ N doping 108cm³, Wp =2x10-4cm WN=100x10-4cm Xno=.0032x104cm, xp0=.32x10-4 cm 1016 1018 2x104cm 100x10-4cmarrow_forwardA popular basis set used in routine electronic structure calculations is the 6-31G basis. What does the "6" signify? number of primitive functions used to form inner valence orbitals total number of primitive functions used to construct each atomic orbital number of primitive functions used to form outer valence orbitals the number of primitive functions used to model each inner shell orbitalarrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning