Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 4P
(II) Monochromatic light falls on two very narrow slits 0.048 mm apart. Successive fringes on a screen 6.00 m away are 8.5 cm apart near the center of the pattern. Determine the wavelength and
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) Monochromatic light falls on two very narrow slits
0.048 mm apart. Successive fringes on a screen 6.00 m away
are 8.5 cm apart near the center of the pattern. Determine
the wavelength and frequency of the light.
(III) A uniform thin film of alcohol (n = 1.36) lies on a flat
glass plate (n = 1.56). When monochromatic light, whose
wavelength can be changed, is incident normally, the reflected
light is a minimum for A = 525 nm and a maximum for
A = 655 nm. What is the minimum thickness of the film?
(c)
Coherent light that contains two wavelengths, 660 nm (red) and 470 nm (blue), passes
through two narrow slits separated by 0.3 mm, and the interference pattern is observed
on a screen 5 m from the slits. Calculate the distance on the screen between the first-
order bright fringes for red and blue light.
Chapter 34 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 34.2 - A light beam in air with wavelength = 500 nm,...Ch. 34.4 - What are the values for the intensity I when (a) y...Ch. 34 - Prob. 1QCh. 34 - What is the evidence that light is energy?Ch. 34 - Why is light sometimes described as rays and...Ch. 34 - We can hear sounds around corners but we cannot...Ch. 34 - Can the wavelength of light be determined from...Ch. 34 - Two rays of light from the same source...Ch. 34 - Monochromatic red light is incident on a double...Ch. 34 - If Youngs double-slit experiment were submerged in...
Ch. 34 - Compare a double-slit experiment for sound waves...Ch. 34 - Suppose white light falls on the two slits of Fig....Ch. 34 - Why doesnt the light from the two headlights of a...Ch. 34 - Why are interference fringes noticeable only for a...Ch. 34 - Prob. 13QCh. 34 - Some coated lenses appear greenish yellow when...Ch. 34 - A drop of oil on a pond appears bright at its...Ch. 34 - (II) Derive the law of reflectionnamely, that the...Ch. 34 - (I) Monochromatic light falling on two slits 0.018...Ch. 34 - (I) The third-order bright fringe of 610 nm light...Ch. 34 - (II) Monochromatic light falls on two very narrow...Ch. 34 - (II) If 720-nm and 660-nm light passes through two...Ch. 34 - (II) A red laser from the physics lab is marked as...Ch. 34 - (II) Light of wavelength passes through a pair of...Ch. 34 - (II) Light of wavelength 680 nm falls on two slits...Ch. 34 - (II) A parallel beam of light from a HeNe laser,...Ch. 34 - (II) A physics professor wants to perform a...Ch. 34 - (II) Suppose a thin piece of glass is placed in...Ch. 34 - (II) In a double-slit experiment it is found that...Ch. 34 - (II) Two narrow slits separated by 1.0 mm are...Ch. 34 - (II) In a double-slit experiment, the third-order...Ch. 34 - (II) Light of wavelength 470 nm in air falls on...Ch. 34 - (II) A very thin sheet of plastic (n = 1.60)...Ch. 34 - (I) If one slit in Fig. 3412 is covered, by what...Ch. 34 - (II) Derive an expression similar to Eq. 342 which...Ch. 34 - (II) Show that the angular full width at half...Ch. 34 - (II) In a two-slit interference experiment, the...Ch. 34 - (III) Suppose that one slit of a double-slit...Ch. 34 - (III) (a) Consider three equally spaced and...Ch. 34 - (I) If a soap bubble is 120 nm thick, what...Ch. 34 - (I) How far apart are the dark fringes in Example...Ch. 34 - (II) (a) What is the smallest thickness of a soap...Ch. 34 - (II) A lens appears greenish yellow ( = 570 nm is...Ch. 34 - (II) A thin film of oil (nO = 1.50) with varying...Ch. 34 - (II) A thin oil slick (no = 1.50) finals on water...Ch. 34 - (II) A total of 31 bright and 31 dark Newtons...Ch. 34 - (II) A line metal foil separates one end of two...Ch. 34 - (II) How thick (minimum) should the air layer be...Ch. 34 - (II) A uniform thin film of alcohol (n = 1.36)...Ch. 34 - (II) Show that the radius r of the mth dark...Ch. 34 - (II) Use the result of Problem 33 to show that the...Ch. 34 - (II) When a Newtons ring apparatus (Fig. 3418) is...Ch. 34 - (II) A planoconvex lucite lens 3.4 cm in diameter...Ch. 34 - (II) Lets explore why only thin layers exhibit...Ch. 34 - (II) How far must the mirror M1 in a Michelson...Ch. 34 - (II) What is the wavelength of the light entering...Ch. 34 - (II) A micrometer is connected to the movable...Ch. 34 - (III) One of the beams of an interferometer (Fig,...Ch. 34 - (III) The yellow sodium D lines have wavelengths...Ch. 34 - Prob. 44PCh. 34 - (II) The luminous efficiency of a lightbulb is the...Ch. 34 - Light of wavelength 5.0 107 m passes through two...Ch. 34 - Television and radio waves reflecting from...Ch. 34 - A radio station operating at 88.5 MHz broadcasts...Ch. 34 - Light of wavelength 690 nm passes through two...Ch. 34 - Monochromatic light of variable wavelength is...Ch. 34 - Suppose the mirrors in a Michelson interferometer...Ch. 34 - A highly reflective mirror can be made for a...Ch. 34 - Calculate the minimum thickness needed for an...Ch. 34 - Stealth aircraft are designed to not reflect...Ch. 34 - Light or wavelength strikes a screen containing...Ch. 34 - Consider two antennas radiating 6.0-MHz radio...Ch. 34 - What is the minimum (non-zero) thickness for the...Ch. 34 - Lloyds mirror provides one way of obtaining a...Ch. 34 - Consider the antenna army of Example 345, Fig....Ch. 34 - A thin film of soap (n = 1.34) coats a piece of...Ch. 34 - Two identical sources S1 and S2, separated by...Ch. 34 - A two-slit interference set-up with slit...Ch. 34 - A radio telescope, whose two antennas are...Ch. 34 - In a compact disc (CD), digital information is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Explain all answers clearly, using complete sentence and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
35. What is the ratio of the sun’s gravitational force on you to the earth’s gravitational force on you?
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is it much more difficult to see interference fringes for light reflected from a thick piece of glass than from a thin film? Would it be easier if monochromatic light were used?arrow_forwardShow that a diffraction grating cannot produce a second-order maximum for a given wavelength of light unless the first-order maximum is at an angle less than 30.0°.arrow_forwardA single slit of width 0.10 mm is illuminated by a mercury lamp of wavelength 576 nm. Find the intensity at a 10° angle to the axis in terms of the intensity of the central maximum.arrow_forward
- Figure 27.56 shows a double slit located a distance x from a screen, with the distance from the center of the screen given by y. When the distance d between the slits is relatively large, there will be numerous bright spots, called fringes. Show that, for small angles (where sin, with in radians), the distance between fringes is given by y=x/d. Figure 27.56 The distance between adjacent fringes is y=x/d, assuming the slit separation d is large compared with .arrow_forwardWhat effect does increasing the wedge angle have on the spacing of interference fringes? If the wedge angle is too large, fringes are not observed. Why?arrow_forwardAn effect analogous to two-slit interference can occur with sound waves, instead of light. In an open field, two speakers placed 1.30 m apart are powered by a single-function generator producing sine waves at 1200-Hz frequency. A student walks along a line 12.5 m away and parallel to the line between the speakers. She hears an alternating pattern of loud and quiet, due to constructive and destructive interference. What is (a) the wavelength of this sound and (b) the distance between the central maximum and the first maximum (loud) position along this line?arrow_forward
- Check Your Understanding Although m, the number of fringes observed, is an integer, which is often regarded as having zero uncertainty, in practical terms, it is all too easy to lose track when counting fringes. In Example 3.6, if you estimate that you might have missed as many as five fringes when you reported m=122 fringes, (a) is the value for the index of refraction worked out in Example 3.6 too large or too small? (b) By how much?arrow_forwardA single slit of width 3.0 m is illuminated by a sodium yellow light of wavelength 589 nm. Find the intensity at a 15° angle to the axis in terms of the intensity of the central maximum.arrow_forwardThe interference pattern of a He-Ne laser light (=632.9nm) passing through two slits 0.031 mm apart is projected on a screen 10.0 m away. Determine the distance between the adjacent bright fringes.arrow_forward
- For 600-nm wavelength light and a slit separation of 0.12 mm, what are the angular positions of the first and third maxima in the double slit interference pattern?arrow_forward(c) Light of wavelength 690 nm passes through two slits which are separated by 0.6 mm. The screen is 1.5 m away. A second source of unknown wavelength produces light and dark fringes which are 1.13 mm closer together than the 690 nm light. What is the wavelength of the unknown light?arrow_forward(b) Coherent light is diffracted by a single slit which is 15 µm wide. The central maximum of the diffracted light has a width of 1.4 cm when it falls on a screen 0.15 m behind the slit. Determine the wavelength of the incident light.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY