Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 31.4, Problem 31.5GI
If you look backward through a refracting telescope like that shown in Fig. 31.32, looking into the objective and with a tiny object very near the eyepiece, will the instrument function as a microscope? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object of height 3.2 cm is placed 4.7 cm in front of a converging lens of focal length 18 cm.
Part (a)
What is the image distance, in centimeters? Include its sign.
s' = ||
sin()
cos()
tan()
π) (
7
8
9
HOME
cotan()
asin()
acos()
E
5
6
←
atan() acotan()
sinh()
*
1 2 3
cosh()
tanh()
cotanh()
+
-
0
●Degrees Radians
VO BACKSPACE
END
DEL
CLEAR
Submit
Hint
Feedback
I give up!
3 Submission(s) Remaining
Hints: 4% deduction per hint. Hints remaining: 2
Feedback: 5% deduction per feedback.
Part (b)
What is the height of the image, in centimeters? Include the sign to indicate the image's orientation with respect to the object.
Find an equation for the length L of a refracting telescope in terms of the focal length of the objective fo and the magnification m. (b) A knob adjusts the eyepiece forward and backward. Suppose the telescope is in focus with an eyepiece giving a magnification of 50.0. By what distance must the eyepiece be adjusted when the eyepiece is replaced, with a resulting magnification of 1.00 x 10 2? Must the eyepiece be adjusted backward or forward? Assume the objective lens has a focal length of 2.00 m.
A certain telescope has an objective of focal length 1 500 cm. If the Moon is used as an object, a 1.0-cm-long image formed by the objective corresponds to what distance, in miles, on the Moon? Assume 3.8 × 108 m for the Earth−Moon distance.
Chapter 31 Solutions
Essential University Physics (3rd Edition)
Ch. 31.1 - You stand in front of a plane mirror whose top is...Ch. 31.1 - Where would you place an object so that its real...Ch. 31.2 - Prob. 31.3GICh. 31.3 - A thin lens has focal length +50 cm. Which of the...Ch. 31.4 - If you look backward through a refracting...Ch. 31 - How can you see a virtual image, when its not...Ch. 31 - Under what circumstances will the image in a...Ch. 31 - If you're handed a converging lens, what can you...Ch. 31 - A diverging lens always makes a reduced image....Ch. 31 - Is there any limit to the temperature you can...
Ch. 31 - Can a concave mirror make a reduced real image? A...Ch. 31 - If you placed a screen at the location of a...Ch. 31 - If you look into the bowl of a metal spoon, you...Ch. 31 - Is the image on a movie screen real or virtual?...Ch. 31 - Does a fish in a spherical bowl appear larger or...Ch. 31 - A block of ice contains a hollow, air-filled space...Ch. 31 - The refractive index of the human cornea is about...Ch. 31 - Do you want a long or short focal length for a...Ch. 31 - Prob. 14FTDCh. 31 - A shoe store uses small floor-level mirrors to let...Ch. 31 - A candle is on the axis of a 15-cm-focal-length...Ch. 31 - Prob. 17ECh. 31 - A virtual image is located 40cm behind a concave...Ch. 31 - (a) Where on the axis of a concave mirror would...Ch. 31 - A lightbulb is 56 cm from a convex lens. Its image...Ch. 31 - By what factor is the image magnified for an...Ch. 31 - A lens with 50-cm focal length produces a real...Ch. 31 - By holding a magnifying glass 25 cm from your desk...Ch. 31 - A real image is four times as far from a lens as...Ch. 31 - Prob. 25ECh. 31 - Youre writing specifications for a new line of...Ch. 31 - Prob. 27ECh. 31 - The bottom of a swimming pool looks to be 1.5 m...Ch. 31 - Prob. 29ECh. 31 - Youre underwater, looking through a spherical air...Ch. 31 - You have to hold a book 55 cm from your eyes for...Ch. 31 - What focal length should you specify if you want a...Ch. 31 - Youre an optometrist helping a nearsighted patient...Ch. 31 - A particular eye has a focal length of 2.0 cm...Ch. 31 - A compound microscope has objective and eyepiece...Ch. 31 - (a) Find the focal length of a concave mirror if...Ch. 31 - A 12-mm-high object is 10cm from a concave mirror...Ch. 31 - Repeat Problem 37 for a convex mirror, assuming...Ch. 31 - An objects image in a 27-cm-focal-length concave...Ch. 31 - Youre asked to design a concave mirror that will...Ch. 31 - Viewed from Earth, the Moon subtends an angle of...Ch. 31 - Prob. 42PCh. 31 - LCD projectors commonly used for computer and...Ch. 31 - An object 15 cm from a concave mirror has a...Ch. 31 - How far from a page should you hold a lens with...Ch. 31 - A converging lens has focal length 4.0 cm. A...Ch. 31 - A lens has focal length f = 35 cm. Find the type...Ch. 31 - How far apart are the object and image produced by...Ch. 31 - A candle and a screen are 70cm apart. Find two...Ch. 31 - Prob. 50PCh. 31 - How far from a 25-cm-focal-length lens should you...Ch. 31 - An object and its lens-produced real image are 2.4...Ch. 31 - An object is 68 cm from a plano-convex lens whose...Ch. 31 - Prob. 54PCh. 31 - Rework Example 31.4 for a fish 15.0 cm from the...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - A contact lens is in the shape of a convex...Ch. 31 - For what refractive index would the focal length...Ch. 31 - An object is 28 cm from a double-convex lens with...Ch. 31 - Youre an optician whos been asked to design a new...Ch. 31 - A double-convex lens with equal 28.5-cm curvature...Ch. 31 - An object placed 17.5 cm from a convex lens of...Ch. 31 - Youre taking a photography class, working with a...Ch. 31 - A camera can normally focus as close as 60cm, but...Ch. 31 - A 300-power compound microscope has a...Ch. 31 - To the unaided eye, Jupiter has an angular...Ch. 31 - A Cassegrain telescope like that shown in Fig....Ch. 31 - You stand with your nose 6.0 cm from the surface...Ch. 31 - A contact lens prescription calls for...Ch. 31 - Show that placing a 1-diopter lens in front of a...Ch. 31 - Derive an expression for the thickness t of a...Ch. 31 - Show that identical objects placed equal distances...Ch. 31 - Generalize the derivation of the lensmakers...Ch. 31 - Draw a diagram like Fig. 31.10, but showing a ray...Ch. 31 - Prob. 76PCh. 31 - The maximum magnification of a simple magnifier...Ch. 31 - Chromatic aberration results from variation of the...Ch. 31 - For visible wavelengths, the refractive index of...Ch. 31 - The table below shows measurements of...Ch. 31 - Zooming your camera's lens for telephoto shots...Ch. 31 - Increasing the f-ratio from 2.8 to 5.6 a....Ch. 31 - Youre given two lenses with different diameters....Ch. 31 - If a lens suffers from spherical aberration,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
In the following diagram, the white spheres represent hydrogen atoms and the blue Sphere represent the nitrogen...
Chemistry: The Central Science (14th Edition)
29. For the reaction
determine the expression for the rate of the reaction in terms of the change in concentr...
Chemistry: Structure and Properties (2nd Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
Distinguish between the concepts of sexual differentiation and sex determination.
Concepts of Genetics (12th Edition)
Sketch the following spectra that would be obtained for 2-chloroethanol: a. The 1H NMR spectrum for an anhydrou...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardThe accommodation limits for a nearsighted persons eyes are 18.0 cm and 80.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly?arrow_forwardTwo stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forward
- The projection lens in a certain slide projector is a single thin lens. A slide 24.0 mm high is to be projected so that its image fills a screen 1.80 m high. The slide-to-screen distance is 3.00 m. (a) Determine the local length of the projection lens, (b) How far from the slide should the lens of the projector be placed so as to form the image on the screen?arrow_forwardA nearsighted man cannot see objects clearly beyond 20 cm from his eyes. How close must he stand to a mirror in order to see what he is doing when he shaves?arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forward
- A thin plastic lens with index of refraction n = 1.67 has radii of curvature given by R1 = 12 0 cm and R2 = 40.0 cm. Determine (a) the focal length of the lens, (b) whether the lens Ls converging or diverging and the image distances for object distances of (c) infinity, (d) 8,00 cm, and (e) 50.0 cm.arrow_forwardWhere does an object need to be placed relative to a microscope for its 0.50 cm-focal length objective to produce a magnification of —400?arrow_forward(11%) Problem 9: An object of height 2.5 cm is placed 4.8 cm in front of a converging lens of focal length 25 cm. Part (a) What is the image distance, in centimeters? Include its sign. Part (b) What is the height of the image, in centimeters? Include the sign to indicate the image’s orientation with respect to the object.arrow_forward
- A refracting telescope has an angular magnification of -83.00. The length of the barrel is 1.500 m. What are the focal lengths of (a) the objective and (b) the eyepiece?arrow_forward4. A person with a normal lens-to-retina distance wears contact lenses with an optical power of 1.54 D in order to be able to clearly see objects 20 cm in front of them. (a) What kind of vision defect does this person have? (b) What is this person’s near point (without the contact lenses)?arrow_forwardA converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 150 cm apart. A 3.0-cm-tall object is 60 cm in front of the converging lens. Calculate the image height. Express your answer in centimeters to two significant figures. h = IVE ΑΣΦ ? cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY