Concept explainers
An electric field

The direction of induced magnetic field if electric field away from you and increasing.
The direction of induced magnetic field if the direction of electric field is towards you and decreasing.
Answer to Problem 1Q
The direction of magnetic field will be clockwise for both the cases.
Explanation of Solution
Write the expression for displacement current as.
Here,
From the above expression it is clear that displacement current is proportional to rate of change of electric flux.
The electric flux is directed away from the observer and is increasing so the direction of displacement current is also away from the observer and therefore the magnetic field will be in clockwise direction.
The electric field is toward the observer and is decreasing so
Conclusion:
Thus, the direction of magnetic field will be clockwise for both the cases.
Want to see more full solutions like this?
Chapter 31 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Additional Science Textbook Solutions
Microbiology: An Introduction
Microbiology with Diseases by Body System (5th Edition)
Chemistry (7th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
- Help me plzarrow_forwardPlease draw the sketch and a FBDarrow_forward8.30 Asteroid Collision. Two asteroids of equal mass in the aster- oid belt between Mars and Jupiter collide with a glancing blow. Asteroid A, which was initially traveling at 40.0 m/s, is deflected 30.0° from its original direction, while asteroid B, which was initially at rest, travels at 45.0° to the original direction of A (Fig. E8.30). (a) Find the speed of each asteroid after the collision. (b) What fraction of the original kinetic energy of asteroid A dissipates during this collision? Figure E8.30 A A 40.0 m/s 30.0° B T- 45.0°arrow_forward
- Please draw a sketch and a FBDarrow_forwardPlease draw a sketch and a FBDarrow_forward8.69 Spheres A (mass 0.020 kg), B (mass 0.030 kg), and C (mass 0.050 kg) are approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are given in Fig. P8.69. All three spheres arrive at the origin at the same time and stick together. (a) What must the x- and y-components of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the +x-direction after the col- lision? (b) If C has the velocity found in part (a), what is the change in the kinetic energy of the system of three spheres as a result of the collision? Figure P8.69 UC C B UB=0.50 m/s 60° VA = 1.50 m/s Aarrow_forward
- 8.36 A 1050 kg sports car is moving westbound at 15.0 m/s on a level road when it collides with a 6320 kg truck driving east on the same road at 10.0 m/s. The two vehicles remain locked together after the collision. (a) What is the velocity (magnitude and direction) of the two vehicles just after the collision? (b) At what speed should the truck have been moving so that both it and the car are stopped in the collision? (c) Find the change in kinetic energy of the system of two vehicles for the situ- ations of parts (a) and (b). For which situation is the change in kinetic energy greater in magnitude?arrow_forward8.10 ⚫ A bat strikes a 0.145 kg baseball. Just before impact, the ball is traveling horizontally to the right at 40.0 m/s; when it leaves the bat, the ball is traveling to the left at an angle of 30° above horizontal with a speed of 52.0 m/s. If the ball and bat are in contact for 1.75 ms, find the horizontal and vertical components of the average force on the ball.arrow_forwardL1=5.2m L2=0.5m L3=1.7m L4=0.6m L5=0.5m L6=0.5m V2=5.4m/sarrow_forward
- M1=0.45M2=1.9M3=0.59arrow_forwardI don't know why part A is wrong and can you help me with part B as wellarrow_forwarda 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





