EBK MACHINE ELEMENTS IN MECHANICAL DESI
6th Edition
ISBN: 9780134451947
Author: Wang
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 6P
A tensile load of 5.00 kN is applied to a square bar, 12 mm on a side and having a length of 1.65 m. Compute the stress and the axial deformation in the bar if it is made from (a) SAE 1020 hot-rolled steel, (b) SAE 8650 OQT 1000 steel, (c) ductile iron A536(60-40-18), (d) aluminum 6061-T6, (e) titanium Ti-6Al-4V, (f) rigid PVC plastic, and (g) phenolic plastic.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A tensile load of 5.00 kN is applied to a square bar 12 mm on a side and having a length of 1.65 m.
(a) Compute the stress and the axial deformation in the bar if it is made from (i) SAE 1020 hot-
rolled steel, (ii) SAE 8650 OQT 1000 steel, (iii) ductile iron A536(60-40-18), (iv) aluminum
6061-T6, (v) titanium Ti-6Al-4V, (vi) rigid PVC plastic, and (vii) phenolic plastic.
(b) For each of the case in (a), compute the maximum safe load that can be carried by the bar.
Two links are connected by a single pin and a tensile force F is applied. The links and the pin are made from Aluminum(sigma_y = 35ksi and T_y = 20ksi). The dimension of the link is 5 inch high by 0.5 inch thick. Find the optimal diameter for the pin and the maximum force,F that can be applied to the linkage before incuring permanent deformation.
Why did it became 4F/A from F/A, in (a)
Chapter 3 Solutions
EBK MACHINE ELEMENTS IN MECHANICAL DESI
Ch. 3 - A tensile member in a machine structure is...Ch. 3 - Compute the stress in a round bar having a...Ch. 3 - Compute the stress in a rectangular bar having...Ch. 3 - A link in a packaging machine mechanism has a...Ch. 3 - Two circular rods support the 3800 lb weight of a...Ch. 3 - A tensile load of 5.00 kN is applied to a square...Ch. 3 - An aluminum rod is made in the form of a hollow...Ch. 3 - Compute the stress in the middle portion of rod AC...Ch. 3 - Compute the forces in the two angled rods in...Ch. 3 - If the rods from Problem 9 are circular, determine...
Ch. 3 - Repeat Problems 9 and 10 if the angle is 15 .Ch. 3 - Figure P312 shows a small truss spanning between...Ch. 3 - The truss shown in Figure P313 spans a total space...Ch. 3 - Figure P314 shows a short leg for a machine that...Ch. 3 - Consider the short compression member shown in...Ch. 3 - Refer Figure P38 . Each of the pins at A, B, and C...Ch. 3 - Compute the shear stress in the pins connecting...Ch. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Compute the torsional shear stress in a circular...Ch. 3 - If the shaft of Problem 22 is 850 mm long and is...Ch. 3 - Compute the torsional shear stress due to a torque...Ch. 3 - Compute the torsional shear stress in a solid...Ch. 3 - Compute the torsional shear stress in a hollow...Ch. 3 - Compute the angle of twist for the hollow shaft of...Ch. 3 - A square steel bar, 25 mm on a side and 650 mm...Ch. 3 - A 3.00 in-diameter steel bar has a flat milled on...Ch. 3 - A commercial steel supplier lists rectangular...Ch. 3 - A beam is simply supported and carries the load...Ch. 3 - For each beam of Problem 31, compute its weight if...Ch. 3 - For each beam of Problem 31, compute the maximum...Ch. 3 - For the beam loading of Figure P334, draw the...Ch. 3 - For the beam loading of Figure P334, design the...Ch. 3 - Figure P336 shows a beam made from 4 in schedule...Ch. 3 - Select an aluminum I-beam shape to carry the load...Ch. 3 - Figure P338 represents a wood joist for a...Ch. 3 - For Problems 39 through 50, draw the free-body...Ch. 3 - Prob. 40PCh. 3 - For Problems 39 through 50, draw the free-body...Ch. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - For Problems 39 through 50, draw the free-body...Ch. 3 - For Problems 39 through 50, draw the free-body...Ch. 3 - For Problems 39 through 50, draw the free-body...Ch. 3 - For Problems 4850, draw the free-body diagram of...Ch. 3 - For Problems 4850, draw the free-body diagram of...Ch. 3 - Prob. 50PCh. 3 - Compute the maximum tensile stress in the bracket...Ch. 3 - Compute the maximum tensile and compressive...Ch. 3 - For the lever shown in Figure P353 (a), compute...Ch. 3 - Compute the maximum tensile stress at sections A...Ch. 3 - Prob. 55PCh. 3 - Refer to Figure P38. Compute the maximum tensile...Ch. 3 - Prob. 57PCh. 3 - Refer to P342. Compute the maximum stress in the...Ch. 3 - Refer to P343. Compute the maximum stress in the...Ch. 3 - Prob. 60PCh. 3 - Figure P361 shows a valve stem from an engine...Ch. 3 - The conveyor fixture shown in Figure P362 carries...Ch. 3 - For the flat plate in tension in Figure P363,...Ch. 3 - For Problems 64 through 68, compute the maximum...Ch. 3 - For Problems 64 through 68, compute the maximum...Ch. 3 - For Problems 64 through 68, compute the maximum...Ch. 3 - For Problems 64 through 68, compute the maximum...Ch. 3 - Prob. 68PCh. 3 - Figure P369 shows a horizontal beam supported by a...Ch. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - The beam shown in Figure P372 is a stepped, flat...Ch. 3 - Figure P373 shows a stepped, flat bar having a...Ch. 3 - Figure P374 shows a bracket carrying opposing...Ch. 3 - Prob. 75PCh. 3 - Figure P376 shows a lever made from a rectangular...Ch. 3 - For the lever in P376, determine the maximum...Ch. 3 - Figure P378 shows a shaft that is loaded only in...Ch. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - A hanger is made from ASTM A36 structural steel...Ch. 3 - A coping saw frame shown in Figure P382 is made...Ch. 3 - Prob. 83PCh. 3 - Figure P384 shows a hand garden tool used to break...Ch. 3 - Figure P385 shows a basketball backboard and goal...Ch. 3 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A link in an automated packaging machine is a hollow tube made from 6061-T6 aluminum. Its dimensions are as follows: outside diameter = 32.0 mm, inside diameter = 28.0 mm, and length = 1.00 m. Compute the tensile force required to produce an elongation of the bar of 1.3 mm. Would the stress produced by the force just found be safe if the load is applied repeatedly?arrow_forwardSolve the following problem of a steel tensile plate with a concentrated load applied at the top, as shown below. Determine at what depth the effect of the load dies out. Plot stress oy versus distance from the load. At distances of 1 in., 2 in., 4 in., 6 in., 10 in., 15 in., 20 in., and 30 in. from the load, list oy versus these distances. Let the width of the plate be b = 4 in., thickness of the plate be t = 0.25 in., and length be in. Look up the concept of St. Venant's principle to see how it explains the stress behavior in this problem. L P = 1000 lb NUMI - E бу bt Oy bt 6 Gy = = P btarrow_forwardCalculate the stress developed in a steel bar that is 50 mm by 25 mm when a 70kNaxial tensile load is applied. Give your answer in two significant figures with MPaunits. Only include a numerical answer with no units.arrow_forward
- A machine member is to be designed to operate under a stress ranging from 10,000 psi compression to 18,000 psi tension. The corrected endurance limit of the part is 28,000 psi. What is the factor of safety against fatigue failure if the yield strength, Sy, is 36,000 psi and the ultimate strength, Sul, is 40,000 psi.arrow_forwardA wooden beam and a steel plate will be attached with three steel bolts. If the plate will be loaded with 120 kN, determine the necessary diameter for the bolts. Assume an ultimate shear stress corresponding to half the ultimate normal stress, for a tool steel, and a factor of safety of 3.25. Sound good material?arrow_forwardA drill drills a hole in a leg of a furniture. Uses a hand-operated drill with a bit of diameter equal to 5.79mm. If the resisting torque supplied by the table is equal to 0.36 N.m, what is the maximum shear stress of the drill bit? If the allowable shear stress in the drill bit is 44.215MPa, what is the maximum resisting toque before the drill binds up?arrow_forward
- For a stress level of 240 MPa compute the maximum stable radius of a semicircular surface flaw in 7075-T651 aluminum alloy plate when loaded in the L-T, T-L, and S-L orientations. Assume plane-strain conditions.arrow_forward4. Determine the design stress for bolts in a cylinder cover where the load is fluctuating due to gas pressure. The maximum load on the bolt is 50 kN and the minimum is 30 kN. The load is unpredict- able and factor of safety is 3. The surface of the bolt is hot rolled and the suface finish factor is 0.9. During a simple tension test and rotating beam test on ductile materials (40 C 8 steel annealed), the following results were obtained : Diameter of specimen =12.5 mm; Yield strength= 240 MPa; Ultimate strength= 450 MPa; Endurance limit = 180 MPa. [Ans. 65.4 MPa]arrow_forwardWhen a cylindrical body is subjected to uniaxial tensile force, which types of stresses are formed within the body? Show the locations of stresses on an appropriate sketch.arrow_forward
- In Figure 1, with its dimensions, loading status and material properties, different full circle cross-section rod has been given. The AB part of the rod is steel, 100 mm in diameter; BC part is copper and its diameter It is 80 mm. (a) Draw the normal force diagram of the bar. (b) Calculate the normal stresses to occur in parts AB and BC. (c) Calculate the total length change of the rod. çelik=steel , bakır=copper L4(cm)=230 , L5(cm)=240 , P1(kN)=124 , P2(kN)=58arrow_forwardIn Figure 1, with its dimensions, loading status and material properties, different full circle cross-section rod has been given. The AB part of the rod is steel, 100 mm in diameter; BC part is copper and its diameter It is 80 mm. (a) Draw the normal force diagram of the bar. (b) Calculate the normal stresses to occur in parts AB and BC. (c) Calculate the total length change of the rod. çelik=steel , bakır=copper , şekil 1 = figure 1 L4(cm)=230 , L5(cm)=240 , P1(kN)=124 , P2(kN)=58arrow_forward1. The tie-rods in the press in Figure are made of the steel alloy SAE 5160 OQT 900 (E=30×106 psi). Each rod has a diameter of 2.00 in. and an initial length of 68.5 in. An axial tensile load of 40 000 lb is exerted on each rod during operation of the press. Compute the deformation of the rods. Press frame Ram Circular steel tie rod attached to press frame Die A cross sectional area Original length Total deformationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY