DISCRETE MATHEMATICS LOOSELEAF
8th Edition
ISBN: 9781264309689
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 5CAE
- Write a program that animates the progress of all the sorting algorithms in Question 3 when given the numbers from 1 to 100 in random order.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the number of ways of selecting exactly one of the two best applicants in a selection of two out of five
Assume that we want to identify a simple random sample of 12 of the 372 doctors practicing in a particular city. The doctors' names are available from a local medical organization. Use the first column of five-digit random numbers in the
table of random numbers to identify the 12 doctors for the sample. Ignore the first two random digits in each five-digit grouping of the random numbers. This process begins with random number 271 and proceeds down the column of
random numbers. (Enter your answers as a comma-separated list.)
1, 139, 345, 56, 89, 210, 111, 267, 111, 267, 301, 159, 37, 222
X
Assume that we want to identify a simple random sample of 12 of the 372 doctors practicing in a particular city. The doctors' names are available from a local medical organization. Use the first column of five-digit
random numbers in the table of random numbers to identify the 12 doctors for the sample. Ignore the first two random digits in each five-digit grouping of the random numbers. This process begins with random
number 271 and proceeds down the column of random numbers. (Enter your answers as a comma-separated list.)
Chapter 3 Solutions
DISCRETE MATHEMATICS LOOSELEAF
Ch. 3.1 - List all the steps used by Algorithm 1 to find the...Ch. 3.1 - Determine which characteristics of an algorithm...Ch. 3.1 - Devise an algorithm that finds the sum of all the...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Describe an algorithm that takes as input a list...Ch. 3.1 - Apalindromeis a string that reads the same forward...Ch. 3.1 - Devise an algorithm to computexn, wherexis a real...
Ch. 3.1 - Describe an algorithm that interchanges the values...Ch. 3.1 - cribe an algorithm that uses only assignment...Ch. 3.1 - List all the steps used to search for 9 in the...Ch. 3.1 - List all the steps used to search for 7 in the...Ch. 3.1 - cribe an algorithm that inserts an integerxin the...Ch. 3.1 - Describe an algorithm for finding the smallest...Ch. 3.1 - Describe an algorithm that locates the first...Ch. 3.1 - Describe an algorithm that locates the last...Ch. 3.1 - Describe an algorithm that produces the maximum,...Ch. 3.1 - Describe an algorithm for finding both the largest...Ch. 3.1 - Describe an algorithm that puts the first three...Ch. 3.1 - Prob. 22ECh. 3.1 - Prob. 23ECh. 3.1 - Describe an algorithm that determines whether a...Ch. 3.1 - Describe an algorithm that will count the number...Ch. 3.1 - nge Algorithm 3 so that the binary search...Ch. 3.1 - Theternary search algorithmlocates an element in a...Ch. 3.1 - Specify the steps of an algorithm that locates an...Ch. 3.1 - Devise an algorithm that finds a mode in a list of...Ch. 3.1 - Devise an algorithm that finds all modes. (Recall...Ch. 3.1 - Two strings areanagramsif each can be formed from...Ch. 3.1 - ennreal numbersx1,x2,...,xn , find the two that...Ch. 3.1 - Devise an algorithm that finds the first term of a...Ch. 3.1 - Prob. 34ECh. 3.1 - Prob. 35ECh. 3.1 - Use the bubble sort to sort 6, 2, 3, 1, 5, 4,...Ch. 3.1 - Use the bubble sort to sort 3, 1, 5, 7, 4, showing...Ch. 3.1 - Use the bubble sort to sortd,f,k,m,a,b, showing...Ch. 3.1 - Adapt the bubble sort algorithm so that it stops...Ch. 3.1 - Use the insertion sort to sort the list in...Ch. 3.1 - Use the insertion sort to sort the list in...Ch. 3.1 - Use the insertion sort to sort the list in...Ch. 3.1 - Sort these lists using the selection sort....Ch. 3.1 - Write the selection sort algorithm in pseudocode.Ch. 3.1 - Describe an algorithm based on the linear search...Ch. 3.1 - Describe an algorithm based on the binary search...Ch. 3.1 - How many comparisons does the insertion sort use...Ch. 3.1 - How many comparisons does the insertion sort use...Ch. 3.1 - Show all the steps used by the binary insertion...Ch. 3.1 - Compare the number of comparisons used by the...Ch. 3.1 - Prob. 51ECh. 3.1 - Devise a variation of the insertion sort that uses...Ch. 3.1 - Prob. 53ECh. 3.1 - List all the steps the naive string matcher uses...Ch. 3.1 - List all the steps the naive string matcher uses...Ch. 3.1 - Use the cashier’s algorithm to make change using...Ch. 3.1 - Use the cashier’s algorithm to make change using...Ch. 3.1 - Use the cashier’s algorithm to make change using...Ch. 3.1 - Prob. 59ECh. 3.1 - Show that if there were a coin worth 12 cents, the...Ch. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Devise a greedy algorithm that determines the...Ch. 3.1 - Suppose we have three menm1,m2, andm3and three...Ch. 3.1 - Write the deferred acceptance algorithm in...Ch. 3.1 - Prob. 66ECh. 3.1 - Prob. 67ECh. 3.1 - Prob. 68ECh. 3.1 - Prove that the Boyer-Moore majority vote algorithm...Ch. 3.1 - Show that the problem of determining whether a...Ch. 3.1 - Prob. 71ECh. 3.1 - Show that the problem of deciding whether a...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Prob. 11ECh. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - Exercises 1—14, to establish a big-Orelationship,...Ch. 3.2 - ermine whetherx3isO(g(x))for each of these...Ch. 3.2 - Explain what it means for a function to be 0(1)Ch. 3.2 - w that iff(x)isO(x)thenf(x)isO(x2).Ch. 3.2 - Suppose thatf(x),g(x), andh(x)are functions such...Ch. 3.2 - kbe a positive integer. Show...Ch. 3.2 - Prob. 19ECh. 3.2 - To simplify:(3a5)3 27a15 Given information:(3a5)3....Ch. 3.2 - ange the functionsn, 1000 logn,nlogn,2n!,2n,3n,...Ch. 3.2 - Arrange the...Ch. 3.2 - Suppose that you have two different algorithms for...Ch. 3.2 - Suppose that you have two different algorithms for...Ch. 3.2 - Give as good a big-Oestimate as possible for each...Ch. 3.2 - e a big-Oestimate for each of these functions. For...Ch. 3.2 - Give a big-Oestimate for each of these functions....Ch. 3.2 - each function in Exercise 1, determine whether...Ch. 3.2 - Prob. 29ECh. 3.2 - Show that each of these pairs of functions are of...Ch. 3.2 - Prob. 31ECh. 3.2 - w thatf(x)andg(x)are functions from the set of...Ch. 3.2 - Prob. 33ECh. 3.2 - Show that3x2+x+1is(3x2)by directly finding the...Ch. 3.2 - Prob. 35ECh. 3.2 - lain what it means for a function to be(1).Ch. 3.2 - Prob. 37ECh. 3.2 - Give a big-Oestimate of the product of the...Ch. 3.2 - Prob. 39ECh. 3.2 - Prob. 40ECh. 3.2 - Prob. 41ECh. 3.2 - pose thatf(x)isO(g(x)). Does it follow...Ch. 3.2 - Prob. 43ECh. 3.2 - pose thatf(x),g(x), andh(x)are functions such...Ch. 3.2 - Prob. 45ECh. 3.2 - Prob. 46ECh. 3.2 - Prob. 47ECh. 3.2 - ress the relationshipf(x)is(g(x))using a picture....Ch. 3.2 - Prob. 49ECh. 3.2 - w that iff(x)=anxn+an1xn1++a1x+a0,...Ch. 3.2 - Prob. 51ECh. 3.2 - Prob. 52ECh. 3.2 - Prob. 53ECh. 3.2 - w thatx5y3+x4y4+x3y5is(x3y3).Ch. 3.2 - w thatxyisO(xy).Ch. 3.2 - w thatxyis(xy).Ch. 3.2 - Prob. 57ECh. 3.2 - Prob. 58ECh. 3.2 - Prob. 59ECh. 3.2 - Prob. 60ECh. 3.2 - Prob. 61ECh. 3.2 - (Requires calculus) Prove or disprove that (2n)!...Ch. 3.2 - Prob. 63ECh. 3.2 - Prob. 64ECh. 3.2 - Prob. 65ECh. 3.2 - Prob. 66ECh. 3.2 - Prob. 67ECh. 3.2 - Prob. 68ECh. 3.2 - Prob. 69ECh. 3.2 - Prob. 70ECh. 3.2 - Prob. 71ECh. 3.2 - Prob. 72ECh. 3.2 - Show thatnlognisO(logn!).Ch. 3.2 - Prob. 74ECh. 3.2 - Prob. 75ECh. 3.2 - Prob. 76ECh. 3.2 - (Requires calculus) For each of these pairs of...Ch. 3.3 - Give a big-Oestimate for the number of operations...Ch. 3.3 - Give a big-Oestimate for the number additions used...Ch. 3.3 - Give a big-Oestimate for the number of operations,...Ch. 3.3 - Give a big-Oestimate for the number of operations,...Ch. 3.3 - Prob. 5ECh. 3.3 - Use pseudocode to describe the algorithm that puts...Ch. 3.3 - Suppose that an element is known to be among the...Ch. 3.3 - Prob. 8ECh. 3.3 - Give a big-Oestimate for the number of comparisons...Ch. 3.3 - Show that this algorithm determines the number of...Ch. 3.3 - pose we havensubsetsS1,S2, ...,Snof the set {1, 2,...Ch. 3.3 - Consider the following algorithm, which takes as...Ch. 3.3 - The conventional algorithm for evaluating a...Ch. 3.3 - re is a more efficient algorithm (in terms of the...Ch. 3.3 - t is the largestnfor which one can solve within...Ch. 3.3 - What is the largestnfor which one can solve within...Ch. 3.3 - What is the largestnfor which one can solve within...Ch. 3.3 - How much time does an algorithm take to solve a...Ch. 3.3 - Prob. 19ECh. 3.3 - What is the effect in the time required to solve a...Ch. 3.3 - Prob. 21ECh. 3.3 - Determine the least number of comparisons, or...Ch. 3.3 - Analyze the average-case performance of the linear...Ch. 3.3 - An algorithm is calledoptimalfor the solution of a...Ch. 3.3 - Describe the worst-case time complexity, measured...Ch. 3.3 - Prob. 26ECh. 3.3 - Prob. 27ECh. 3.3 - Prob. 28ECh. 3.3 - Analyze the worst-case time complexity of the...Ch. 3.3 - Analyze the worst-case time complexity of the...Ch. 3.3 - Analyze the worst-case time complexity of the...Ch. 3.3 - Prob. 32ECh. 3.3 - Prob. 33ECh. 3.3 - Prob. 34ECh. 3.3 - Determine a big-O estimate for the worst-case...Ch. 3.3 - Determine the number of character comparisons used...Ch. 3.3 - Determine a big-Oestimate of the number of...Ch. 3.3 - Prob. 38ECh. 3.3 - Prob. 39ECh. 3.3 - Show that the greedy algorithm for making change...Ch. 3.3 - rcises 41 and 42 deal with the problem of...Ch. 3.3 - rcises 41 and 42 deal with the problem of...Ch. 3.3 - Prob. 43ECh. 3.3 - Prob. 44ECh. 3.3 - Prob. 45ECh. 3.3 - Prob. 46ECh. 3.3 - Prob. 47ECh. 3.3 - Prob. 48ECh. 3.3 - Prob. 49ECh. 3 - Define the termalgorithm. What are the different...Ch. 3 - Describe, using English, an algorithm for finding...Ch. 3 - Prob. 3RQCh. 3 - Prob. 4RQCh. 3 - Prob. 5RQCh. 3 - Define what the worst-case time complexity,...Ch. 3 - Prob. 7RQCh. 3 - Describe the bubble sort algorithm. Use the bubble...Ch. 3 - Describe the insertion sort algorithm. Use the...Ch. 3 - Explain the concept of a greedy algorithm. Provide...Ch. 3 - Prob. 11RQCh. 3 - Describe an algorithm for locating the last...Ch. 3 - Prob. 2SECh. 3 - Give an algorithm to determine whether a bit...Ch. 3 - Suppose that a list contains integers that are in...Ch. 3 - Prob. 5SECh. 3 - Prob. 6SECh. 3 - Prob. 7SECh. 3 - Prob. 8SECh. 3 - Prob. 9SECh. 3 - Prob. 10SECh. 3 - Show the steps used by the shaker sort to sort the...Ch. 3 - Express the shaker sort in pseudocode.Ch. 3 - Prob. 13SECh. 3 - Prob. 14SECh. 3 - Prob. 15SECh. 3 - w that8x3+12x+100logxisO(x3).Ch. 3 - Prob. 17SECh. 3 - Prob. 18SECh. 3 - Prob. 19SECh. 3 - w thatnnis notO(n!).Ch. 3 - Prob. 21SECh. 3 - Prob. 22SECh. 3 - Prob. 23SECh. 3 - Prob. 24SECh. 3 - Arrange the...Ch. 3 - Prob. 26SECh. 3 - Prob. 27SECh. 3 - Show that if the denominations of coins arec0,c1,...Ch. 3 - Prob. 29SECh. 3 - Prob. 30SECh. 3 - Prob. 31SECh. 3 - Show that the deferred acceptance algorithm given...Ch. 3 - Prob. 33SECh. 3 - Show that when woman do the proposing in the...Ch. 3 - Prob. 35SECh. 3 - Prob. 36SECh. 3 - Prob. 37SECh. 3 - Prob. 38SECh. 3 - Prob. 39SECh. 3 - Prob. 40SECh. 3 - Prob. 41SECh. 3 - Exercises 4246 we will study the problem of load...Ch. 3 - Prob. 43SECh. 3 - Prob. 44SECh. 3 - Prob. 45SECh. 3 - Prove that the algorithm from Exercise 44 is a...Ch. 3 - Prob. 1CPCh. 3 - Prob. 2CPCh. 3 - Prob. 3CPCh. 3 - Prob. 4CPCh. 3 - Prob. 5CPCh. 3 - Prob. 6CPCh. 3 - Prob. 7CPCh. 3 - Given an integern, use the cashier’s algorithm to...Ch. 3 - Prob. 9CPCh. 3 - Prob. 10CPCh. 3 - Prob. 11CPCh. 3 - Prob. 1CAECh. 3 - Prob. 2CAECh. 3 - Using a generator of random orderings of the...Ch. 3 - Prob. 4CAECh. 3 - Write a program that animates the progress of all...Ch. 3 - Examine the history of the wordalgorithmand...Ch. 3 - Prob. 2WPCh. 3 - Explain how sorting algorithms can be classified...Ch. 3 - Prob. 4WPCh. 3 - Prob. 5WPCh. 3 - Prob. 6WPCh. 3 - Describe the historic trends in how quickly...Ch. 3 - Develop a detailed list of algorithmic paradigms...Ch. 3 - Explain what the Turing Award is and describe the...Ch. 3 - Prob. 10WPCh. 3 - Prob. 11WPCh. 3 - Describe six different NP-complete problems.Ch. 3 - Prob. 13WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the g.c.d of the numbers 2,045 and 910 using Euclidian Algorithm.arrow_forwardMost software allows the questions on an exam to be re-ordred (or shuffled) for each student. Another feature is to randomly select some number of pre-made questions from a pool of questions. Consider a pool with 100 questions. Prof A creates a quiz with 10 random questions selected from the pool (100 questions). What is the number of quizzes – not containing the same set of questions – that can be created this way? Prof B creates a quiz by hand picking 10 questions from this pool – the same 10 for each student, but the questions are shuffled in different/distinct orders. What is the number of such quizzes? Remember to show your work that explains your answer. Show the steps on how to solve itarrow_forwardFind the median, first quartile (Q1) and the third quartile (Q3) for the data shown, which is already sorted. The number of data is n= 11. Katye Kozak's algorithm: Sort the data and compute the median. When n is an odd number, the median is the center value. When n is an even number, the median is the center value. After computing the median, Q1 is the median of the 1st half of the data, not including the median value. Q3 is the median of the 2nd half of the data, not including the median value. Do not round your answers. x2.66.88.51515.821.221.721.922.128.829.8MedianMedian= Q1Q1= Q3Q3=arrow_forward
- Find the median, first quartile (Q1) and the third quartile (Q3) for the data shown, which is already sorted. The number of data is n= 11. Katye Kozak's algorithm: Sort the data and compute the median. When n is an odd number, the median is the center value. When n is an even number, the median is the center value. After computing the median, Q1 is the median of the 1st half of the data, not including the median value. Q3 is the median of the 2nd half of the data, not including the median value. Do not round your answers. x 1.2 2.6 7.7 9.5 14 16.3 17.6 19.9 22.2 25.2 26.3 Median= Q1 = Q3 =arrow_forwardFind the median, first quartile (Q1) and the third quartile (Q3) for the data shown, which is already sorted. The number of data is n= 11. Katye Kozak's algorithm: Sort the data and compute the median. When n is an odd number, the median is the center value. When n is an even number, the median is the center value. After computing the median, Q1 is the median of the 1st half of the data, not including the median value. Q3 is the median of the 2nd half of the data, not including the median value. Do not round your answers. 1.5 3.3 7.4 7.5 8.9 11.7 17.2 20.3 22.4 24.3 26.7 Median = Q1 = Q3 =arrow_forwardComputer keyboard failures can be attributed to electrical defects or mechanical defects. A repair facility currently has 25 failed keyboards, 12 of which have electrical defects and 13 of which have mechanical defects. (a) = 53130 i have this answer need help with other two. How many ways are there to randomly select 5 of these keyboards for a thorough inspection (without regard to order)? (b) In how many ways can a sample of 5 keyboards be selected so that exactly two have an electrical defect? (c) If a sample of 5 keyboards is randomly selected, what is the probability that at least 4 of these will have a mechanical defect? (Round your answer to four decimal places.)arrow_forward
- Suppose there are 14 men and 6 women in an office. A CEO randomly selects 5 workers from the office without replacement. What is the probably that the selected workers contain 3 women?arrow_forwardAn engineer developed a new algorithm that detects whether a vehicle is present in an image. To test her algorithm, she selected 1,00 0 photos from the library of 100,00 photos. Among the photos in the library, 50% contain a vehicle (50,000 photos). She ran the algorithm on each of the selected photos and tagged 460 photos containing a vehi 46%. a. what is the population? b what is the sample? c what is the variable of interest?iiarrow_forwardHow can you randomize the items of a list in place in Python?arrow_forward
- A computer used by a 24-hour banking service is supposed to randomly assign each transaction to one of 5 memory locations. A check at the end of a day's transactions gave the counts shown in the table to each of the 5 memory locations, along with the number of reported errors. Memory Location: 1 2 3 4 5 Number of Transactions: 82 100 74 92 102 Number of Reported Errors 11 12 6 9 10 The bank manager wanted to test whether the proportion of errors in transactions assigned to each of the 5 memory locations differ. Which test would be used to properly analyze the data in this experiment? χ2 test for difference among more than two proportions χ2 test of independence McNemar test for the difference among more than two proportions McNemar test for the difference between two proportionsarrow_forwardIn how many ways can 5 people arrange themselves in a row for picture taking?arrow_forwardStarting in 2000 and going through Hurricane Harvey in 2017, there have been 264 named storms in the past 18 years. Suppose we want to select a simple random sample of 12 named storms for further analysis. Each named storm is associated with a three-digit number between 001 and 264. The lists of numbers below are two rows of a table of random digits; please start at the far left of the first row and select a simple random sample of 12 named storms out of the total of 264 named storms. All that is required is to simply give the numbers of the 12 named storms that were chosen using the rows of random digits below. 459035 822957 232850 920854 829109 485767 859105 938502 948503 958239 447728 298347 103494 735599 201944 113927 104838 845902 003410 452229 793865 811299 357273 405820 198223 804367 a. Using the lines of random digits provided, the list of 12 numbers selected is as follows: 035, 232, 109, 105, 239, 103, 201, 113, 104, 003, 229 and 198. a. Using the lines of random digits…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
12. Searching and Sorting; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=6LOwPhPDwVc;License: Standard YouTube License, CC-BY
Algorithms and Data Structures - Full Course for Beginners from Treehouse; Author: freeCodeCamp.org;https://www.youtube.com/watch?v=8hly31xKli0;License: Standard Youtube License