Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
3rd Edition
ISBN: 9780133593211
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 1MDP
  1. 1. Prove the law of the lever.
Expert Solution & Answer
Check Mark
To determine

Prove the law of the lever.

Answer to Problem 1MDP

The law of the lever is proved.

Explanation of Solution

Consider the lever consists of rigid bar is shown in Figure 1.

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 1MDP , additional homework tip  1

According to the law of lever, in equilibrium condition the torque due to effort force is equal to the torque load.

τeffort=τload (1)

Refer to Figure 1, write the formula for τeffort and τload.

τload=Fede (2)

τload=Fldl (3)

Substitute equation (2) and (3) in equation (1)

Fede=Fldl (4)

Proof:

Consider the uniform bar ABCD suspended by middle point M as shown in Figure 2.

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 1MDP , additional homework tip  2

Refer to Figure 2; the bar is divided into two parts as AEFD and EBCF. Consider the middle point of AEFD is K and the middle point of EBCF is L.

The force of AEFD is represented as FAEFD and the force of EBCF is represented as FEBCF. The force FAEFD and FEBCF are proportional to GI and IH respectively.

Write the relation between two forces.

FAEFDFEBCF=GIIH (5)

Consider the forces FAEFD and FEBCF are concentrated at K and L.

Modify equation (4) for FAEFD and FEBCF as follows.

FAEFD×MK=FEBCF×ML

FAEFDFEBCF=MLMK (6)

Substitute MLMK for FAEFDFEBCF in equation (5) to prove the law of the lever.

GIIH=MLMK (7)

Consider l and b is used to name the GH bar and MI bar respectively.

GH=lMI=b

Write the expression for GI.

GI=12GH+MI

Substitute l for GH and b for MI to find GI.

GI=l2+b=l+2b2

Write the expression for IH.

IH=GHGI

Substitute  l for GH and l+2b2 for GI to find IH.

IH=l(l+2b2)=2ll2b2=l2b2

Write the expression for IH.

ML=MI+IH2

Substitute b for MI and l2b2 for IH to find ML.

ML=b+(l2b2)2=b+l2b4=4b+l2b4=l+2b4

Write the expression for GK.

GK=GI2

Substitute l+2b2 for GI to find GK.

GK=(l+2b2)2=l+2b4

Write the expression for MK.

MK=GMGK

Substitute 12GH for GM.

MK=12GHGK

Substitute  l for GH and l+2b4 for GK to find MK.

MK=l2l+2b4=2ll2b4=l2b4

Substitute l+2b2 for GI and l2b2 for IH to find the ratio of GItoIH.

GIIH=(l+2b2)(l2b2)

GIIH=l+2bl2b (8)

Substitute l+2b4 for ML, and l2b4 for MK to find the ratio of MLtoMK.

MLMK=(l+2b4)(l2b4)

MLMK=l+2bl2b (9)

Compare equations (8) and (9).

GIIH=MLMK (10)

Compare equation (7) and (10), which satisfies the law of the lever.

Conclusion:

Thus, the law of the lever is proved.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
This is part B Part A's question and answer was find moment of inertia (Ix = 3.90×10^5) and radius of gyration (kx = 21.861) Determine the centroid ( x & y ) of the I-section, Calculate the moment of inertia of the section about itscentroidal x & y axes. How or why is this result different fromthe result of a previous problem?
Determine by direct integration the moment of inertia of theshaded area of figure with respect to the y axis shown
Consider the feedback controlled blending system shown below, which is designed to keep theoutlet concentration constant despite potential variations in the stream 1 composition. The density of all streamsis 920 kg/m3. At the nominal steady state, the flow rates of streams 1 and 2 are 950 and 425 kg/min,respectively, the liquid level in the tank is 1.3 m, the incoming mass fractions are x1 = 0.27, x2 = 0.54. Noticethe overflow line, indicating that the liquid level remains constant (i.e. any change in total inlet flow ratetranslates immediately to the same change in the outlet flow rate). You may assume the stream 1 flowrate andthe stream 2 composition are both constant. Use minutes as the time unit throughout this problem.   Identify any controlled variable(s) (CVs), manipulated variable(s) (MVs),and disturbance variable(s) (DVs) in this problem. For each, explain how you know that’show it is classified.CVs: ___________, MVs: _____________, DVs: ______________ b)  Draw a block diagram…

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
What types of coolant are used in vehicles?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

How does a computers main memory differ from its auxiliary memory?

Java: An Introduction to Problem Solving and Programming (8th Edition)

What is an uninitialized variable?

Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License