Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
3rd Edition
ISBN: 9780133593211
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 1MDP
  1. 1. Prove the law of the lever.
Expert Solution & Answer
Check Mark
To determine

Prove the law of the lever.

Answer to Problem 1MDP

The law of the lever is proved.

Explanation of Solution

Consider the lever consists of rigid bar is shown in Figure 1.

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 1MDP , additional homework tip  1

According to the law of lever, in equilibrium condition the torque due to effort force is equal to the torque load.

τeffort=τload (1)

Refer to Figure 1, write the formula for τeffort and τload.

τload=Fede (2)

τload=Fldl (3)

Substitute equation (2) and (3) in equation (1)

Fede=Fldl (4)

Proof:

Consider the uniform bar ABCD suspended by middle point M as shown in Figure 2.

Thinking Like an Engineer: An Active Learning Approach (3rd Edition), Chapter 3, Problem 1MDP , additional homework tip  2

Refer to Figure 2; the bar is divided into two parts as AEFD and EBCF. Consider the middle point of AEFD is K and the middle point of EBCF is L.

The force of AEFD is represented as FAEFD and the force of EBCF is represented as FEBCF. The force FAEFD and FEBCF are proportional to GI and IH respectively.

Write the relation between two forces.

FAEFDFEBCF=GIIH (5)

Consider the forces FAEFD and FEBCF are concentrated at K and L.

Modify equation (4) for FAEFD and FEBCF as follows.

FAEFD×MK=FEBCF×ML

FAEFDFEBCF=MLMK (6)

Substitute MLMK for FAEFDFEBCF in equation (5) to prove the law of the lever.

GIIH=MLMK (7)

Consider l and b is used to name the GH bar and MI bar respectively.

GH=lMI=b

Write the expression for GI.

GI=12GH+MI

Substitute l for GH and b for MI to find GI.

GI=l2+b=l+2b2

Write the expression for IH.

IH=GHGI

Substitute  l for GH and l+2b2 for GI to find IH.

IH=l(l+2b2)=2ll2b2=l2b2

Write the expression for IH.

ML=MI+IH2

Substitute b for MI and l2b2 for IH to find ML.

ML=b+(l2b2)2=b+l2b4=4b+l2b4=l+2b4

Write the expression for GK.

GK=GI2

Substitute l+2b2 for GI to find GK.

GK=(l+2b2)2=l+2b4

Write the expression for MK.

MK=GMGK

Substitute 12GH for GM.

MK=12GHGK

Substitute  l for GH and l+2b4 for GK to find MK.

MK=l2l+2b4=2ll2b4=l2b4

Substitute l+2b2 for GI and l2b2 for IH to find the ratio of GItoIH.

GIIH=(l+2b2)(l2b2)

GIIH=l+2bl2b (8)

Substitute l+2b4 for ML, and l2b4 for MK to find the ratio of MLtoMK.

MLMK=(l+2b4)(l2b4)

MLMK=l+2bl2b (9)

Compare equations (8) and (9).

GIIH=MLMK (10)

Compare equation (7) and (10), which satisfies the law of the lever.

Conclusion:

Thus, the law of the lever is proved.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q1: Determine the length, angle of contact, and width of a 9.75 mm thick leather belt required to transmit 15 kW from a motor running at 900 r.p.m. The diameter of the driving pulley of the motor is 300 mm. The driven pulley runs at 300 r.p.m. and the distance between the centers of two pulleys is 3 meters. The density of the leather is 1000 kg/m³. The maximum allowable stress in the leather is 2.5 MPa. The coefficient of friction between the leather and pulley is 0.3. Assume open belt drive.
5. A 15 kW and 1200 r.p.m. motor drives a compressor at 300 r.p.m. through a pair of spur gears having 20° stub teeth. The centre to centre distance between the shafts is 400 mm. The motor pinion is made of forged steel having an allowable static stress as 210 MPa, while the gear is made of cast steel having allowable static stress as 140 MPa. Assuming that the drive operates 8 to 10 hours per day under light shock conditions, find from the standpoint of strength, 1. Module; 2. Face width and 3. Number of teeth and pitch circle diameter of each gear. Check the gears thus designed from the consideration of wear. The surface endurance limit may be taken as 700 MPa. [Ans. m = 6 mm; b= 60 mm; Tp=24; T=96; Dp = 144mm; DG = 576 mm]
4. G A micarta pinion rotating at 1200 r.p.m. is to transmit 1 kW to a cast iron gear at a speed of 192 r.p.m. Assuming a starting overload of 20% and using 20° full depth involute teeth, determine the module, number of teeth on the pinion and gear and face width. Take allowable static strength for micarta as 40 MPa and for cast iron as 53 MPa. Check the pair in wear.

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
What types of coolant are used in vehicles?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

How does a computers main memory differ from its auxiliary memory?

Java: An Introduction to Problem Solving and Programming (8th Edition)

What is an uninitialized variable?

Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License