(II) Repeat Example 24-12 assuming the battery remains connected when the dielectric is inserted. Also, what is the free charge on the plates after the dielectric is added (let this be part ( h ) of this Problem)? EXAMPLE 24-12 Dielectric partially fills capacitor. A parallel-plate capacitor has plates of area A = 250 cm 2 and separation d = 2.00 mm. The capacitor is charged to a potential difference V 0 = 150 V. Then the battery is disconnected (the charge Q on the plates then won’t change), and a dielectric sheet ( K = 3.50) of the same area A but thickness l = 1.00 mm is placed between the plates as shown in Fig. 24-18. Determine ( a ) the initial capacitance of the air-filled capacitor, ( b ) the charge on each plate before the dielectric is inserted, ( c ) the charge induced on each face of the dielectric after it is inserted, ( d ) the electric field in the space between each plate and the dielectric, ( e ) the electric field in the dielectric, ( f ) the potential difference between the plates after the dielectric is added, and ( g ) the capacitance after the dielectric is in place.
(II) Repeat Example 24-12 assuming the battery remains connected when the dielectric is inserted. Also, what is the free charge on the plates after the dielectric is added (let this be part ( h ) of this Problem)? EXAMPLE 24-12 Dielectric partially fills capacitor. A parallel-plate capacitor has plates of area A = 250 cm 2 and separation d = 2.00 mm. The capacitor is charged to a potential difference V 0 = 150 V. Then the battery is disconnected (the charge Q on the plates then won’t change), and a dielectric sheet ( K = 3.50) of the same area A but thickness l = 1.00 mm is placed between the plates as shown in Fig. 24-18. Determine ( a ) the initial capacitance of the air-filled capacitor, ( b ) the charge on each plate before the dielectric is inserted, ( c ) the charge induced on each face of the dielectric after it is inserted, ( d ) the electric field in the space between each plate and the dielectric, ( e ) the electric field in the dielectric, ( f ) the potential difference between the plates after the dielectric is added, and ( g ) the capacitance after the dielectric is in place.
(II) Repeat Example 24-12 assuming the battery remains connected when the dielectric is inserted. Also, what is the free charge on the plates after the dielectric is added (let this be part (h) of this Problem)?
EXAMPLE 24-12 Dielectric partially fills capacitor. A parallel-plate capacitor has plates of area A = 250 cm2 and separation d = 2.00 mm. The capacitor is charged to a potential difference V0 = 150 V. Then the battery is disconnected (the charge Q on the plates then won’t change), and a dielectric sheet (K = 3.50) of the same area A but thickness l = 1.00 mm is placed between the plates as shown in Fig. 24-18. Determine (a) the initial capacitance of the air-filled capacitor, (b) the charge on each plate before the dielectric is inserted, (c) the charge induced on each face of the dielectric after it is inserted, (d) the electric field in the space between each plate and the dielectric, (e) the electric field in the dielectric, (f) the potential difference between the plates after the dielectric is added, and (g) the capacitance after the dielectric is in place.
No chatgpt pls will upvote Already got wrong chatgpt answer
PART III - RESISTORS IN PARALLEL
Consider (but do not yet build) the circuit shown in the circuit diagram
to the left, which we will call Circuit 3. Make sure you are using Bert
bulbs. You may want to wire two batteries in series rather than use a
single battery.
7. Predict:
a) How will the brightness of bulb B3A compare to the brightness
to bulb B3B?
c)
X
E
B3A
b) How will the brightness of bulb BзA compare to the brightness of bulb B₁ from Circuit 1?
How will the currents at points X, Y, and Z be related?
www
d) How will the current at point X in this circuit compare to the current at point X from Circuit 1?
Y
Z
B3B
www
PART II - RESISTORS IN SERIES
Consider (but do not yet build) the circuit shown in the circuit diagram to the left,
which we will call Circuit 2. Make sure you are using Bert bulbs. You may want
to wire two batteries in series rather than use a single battery.
4. Predict:
a) How will the brightness of bulb B₂ compare to the brighness to bulb
B2B?
X
B2A
E
Y
B2B
Ꮓ
b) How will the brightness of bulb B2A compare to the brightness of bulb B₁ from Circuit 1?
c) How will the currents at points X, Y, and Z be related?
d) How will the current at point X in this circuit compare to the current at point X from Circuit 1?
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.