
Essential University Physics: Volume 2 (3rd Edition)
3rd Edition
ISBN: 9780321976420
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23.2, Problem 23.2GI
If I give you a 5-gallon bucket, you know how much water it can hold. If I give you a 5-μF capacitor, do you know how much charge it can hold? Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic
surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on
the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of
static friction between the bag and the carousel.
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N
(b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a
position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the
coefficient of static friction between the bag and the carousel.
Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative
to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other
planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.)
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your
calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s
(b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational
slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on
Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of
4.10 x 10 m/s relative…
As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction.
i
(a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary:
g.)
h =
(b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it
reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.)
NB - NT =
The normal force…
Chapter 23 Solutions
Essential University Physics: Volume 2 (3rd Edition)
Ch. 23.1 - Three positive charges and one negative charge,...Ch. 23.2 - If I give you a 5-gallon bucket, you know how much...Ch. 23.3 - You need to replace a capacitor with one that can...Ch. 23.3 - GOT IT? 23.4 You have two identical capacitors...Ch. 23.4 - Youre at a point P a distance a from a point...Ch. 23 - Two positive point charges are infinitely far...Ch. 23 - How does the energy density at a certain distance...Ch. 23 - A dipole consists of two equal but opposite...Ch. 23 - Charge is spread over the surface of a balloon,...Ch. 23 - Does the superposition principle hold for...
Ch. 23 - A student argues that the total energy associated...Ch. 23 - A capacitor is said to carry a charge Q. Whats the...Ch. 23 - Does the capacitance describe the maximum amount...Ch. 23 - Is a force needed to hold the plates of a charged...Ch. 23 - A solid conducting slab is inserted between the...Ch. 23 - Two capacitors contain equal amounts of energy,...Ch. 23 - A parallel-plate capacitor is connected to a...Ch. 23 - Four 75-C charges, initially far apart, are...Ch. 23 - Three point charges +q and a fourth, 12q, are...Ch. 23 - Repeat Exercise 14 for the case when the fourth...Ch. 23 - If the three particles in Fig. 23.1 have identical...Ch. 23 - A crude model of the water molecule has a...Ch. 23 - A capacitor consists of square conducting plates...Ch. 23 - An uncharged capacitor has parallel plates 5.0 cm...Ch. 23 - (a) How much charge must be transferred between...Ch. 23 - A capacitors plates hold 1.3 C when charged to 60...Ch. 23 - Show that the units of 0 may be written as F/m.Ch. 23 - Find the capacitance of a parallel-plate capacitor...Ch. 23 - A parallel-plate capacitor with 1.1-mm plate...Ch. 23 - The power supply in a stereo receiver contains a...Ch. 23 - Find the capacitance of a capacitor that stores...Ch. 23 - You have a 1.0-F and a 2.0-F capacitor. What...Ch. 23 - Two capacitors are connected in series and the...Ch. 23 - (a) Find the equivalent capacitance of the...Ch. 23 - Youre given three capacitors: 1.0 F, 2.0 F, and...Ch. 23 - The energy density in a uniform electric field is...Ch. 23 - A car battery stores about 4 MJ of energy. If this...Ch. 23 - Air undergoes dielectric breakdown at a field...Ch. 23 - Consider a proton to be a uniformly charged sphere...Ch. 23 - A charge Q0 is at the origin. A second charge. Qx...Ch. 23 - A conducting sphere of radius a is surrounded by a...Ch. 23 - Two closely spaced square conducting plates...Ch. 23 - The potential difference across a cell membrane is...Ch. 23 - Which can store more energy: a 1.0-F capacitor...Ch. 23 - A 0.01-F, 300-V capacitor costs 25; a 0.1-F, 100-V...Ch. 23 - A medical defibrillator stores 950 J in a 100-F...Ch. 23 - A camera requires 5.0 J of energy for a flash...Ch. 23 - Engineers testing an ultracapacitor (see...Ch. 23 - Your companys purchasing department bought lots of...Ch. 23 - Whats the equivalent capacitance measured between...Ch. 23 - In Fig. 23.14, find the energy stored in the 1-F...Ch. 23 - Capacitors C1, and C2 are in series, with voltage...Ch. 23 - Youre evaluating a new hire in your companys...Ch. 23 - A parallel-plate capacitor has plates with area 50...Ch. 23 - A 470-pF capacitor consists of two 15-cm-radius...Ch. 23 - The first accurate estimate of cell membrane...Ch. 23 - Your company is still stuck with those 2-F...Ch. 23 - A cubical region 1.0 m on a side is located...Ch. 23 - A sphere of radius R contains charge Q spread...Ch. 23 - A sphere of radius R carries total charge Q...Ch. 23 - Prob. 56PCh. 23 - Two widely separated 4.0-mm-diameter water drops...Ch. 23 - A 2.1-mm-diameter wire carries a uniform line...Ch. 23 - A typical lightning flash transfers 30 C across a...Ch. 23 - A capacitor consists of two long concentric metal...Ch. 23 - A capacitor consists of a conducting sphere of...Ch. 23 - Show that the result of Problem 61 reduces to that...Ch. 23 - A solid sphere contains a uniform volume charge...Ch. 23 - An air-insulated parallel-plate capacitor of...Ch. 23 - Repeat parts (b) and (c) of Problem 64, now...Ch. 23 - A transmission line consists of two parallel...Ch. 23 - An infinitely long rod of radius R carries uniform...Ch. 23 - (a) Write the electrostatic potential energy of a...Ch. 23 - An unknown capacitor C is connected in series with...Ch. 23 - What total capacitance is required if the...Ch. 23 - If it were technically and economically feasible...Ch. 23 - While theyre firing, the average power delivered...Ch. 23 - Among the capacitors that store energy at NIF are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A geneticist from an alien planet that prohibits genetic research brought with him to Earth two pure-breeding l...
Concepts of Genetics (12th Edition)
In Figure 12.14, why do the nuclei resulting from experiment 2 contain different amounts of DNA?
Campbell Biology (11th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
20.1 Compare and contrast the terms in each of the following pairs:
population and gene pool
random mating and ...
Genetic Analysis: An Integrated Approach (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following three kinds of ...
Cosmic Perspective Fundamentals
1.14 Classify each of the following as a pure substance or a mixture. If a mixture, indicate whether it is homo...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. i The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is…arrow_forwardOne popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. Pulp Motor Spinning basket Juice spout (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? m/s² ---Direction--- (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…arrow_forwardA satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forward
- Shown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forwardA spring with unstretched length of 14.3 cm has a spring constant of 4.63 N/m. The spring is lying on a horizontal surface, and is attached at one end to a vertical post. The spring can move freely around the post. The other end of the spring is attached to a puck of mass m. The puck is set into motion in a circle around the post with a period of 1.32 s. Assume the surface is frictionless, and the spring can be described by Hooke's law. (a) What is the extension of the spring as a function of m? (Assume x is in meters and m is in kilograms. Do not include units in your answer.) x = Your answer cannot be understood or graded. More Information x Find x (in meters) for the following masses. (If not possible, enter IMPOSSIBLE.) (b) m = 0.0700 kg x Use your result from part (a), and insert the given value for m. m (c) m 0.140 kg × Use your result from part (a), and insert the given value for m. m (d) m = 0.180 kg x Use your result from part (a), and insert the given value for m. m (e) m =…arrow_forward
- A spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 860 kg. It has strayed too close to a black hole having a mass 98 times that of the Sun. The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. 100 m- 10.0 km Black hole (a) Determine the total force on the spacecraft. The total force is determined by the distance from the black hole to the center of gravity of the ship which will be close to the midpoint. N (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in acceleration grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.) N/kg 2.56e+12arrow_forwardQ1: Find the volume of the object shown to the correct number of significant figures. ( 22.37 cm 9.10 cm 85.75 cm Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year, what is this speed in SI units? ( Q3: Suppose a well known professor Raitman discovers Raitman's Law which states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are displacement, velocity, acceleration, and time, respectively? (arrow_forwardBecause you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below. This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…arrow_forward
- Q6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain attempts to cross the river in his ferry at right angles to the bank but by the time it has reached the opposite bank the captain awakes and notices that it is 1.0 km downstream. If the captain wishes to take his boat directly across, what angle upstream must he point the boat assuming the boat speed remains the same? ( Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from above) at a constant speed of 8 m s-1. From an instant when the stopper is moving in a northerly direction, find its change in velocity after moving round (a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a revolution.arrow_forwardQ9: When a wedding ring is thrown horizontally out of a fifth-floor window 15 m off the ground, it lands 7.5 m out from the base of the building. Calculate the throwing speed; (a) (b) the impact velocity; (c) how long the marriage will last. Q10: A girl on a sled with a combined mass of 50.0- kg slides down a frictionless hill from rest. When she gets to the bottom of the hill, she is traveling at 3.00 m/s. How high is the hill?" m = 50.0 kg HILL v, 3.00 m/s ■ 0 (ground)arrow_forwardThis is data I collected from a Centripetal Acceleration and Force lab. Please help with interpreting the data, thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY