EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 57PCE
A solenoid that is 72 cm long produces a magnetic field of 1.8 T within its core when it carries a current of 8.1 A. How many turns of wire are contained in this solenoid?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
EBK PHYSICS
Ch. 22.1 - Is pole 1 in the bar magnet shown in Figure 22-7 a...Ch. 22.2 - Prob. 2EYUCh. 22.3 - A particle orbits in a magnetic field with a...Ch. 22.4 - The following systems consist of a...Ch. 22.5 - Two current-carrying loops are identical, except...Ch. 22.6 - Prob. 6EYUCh. 22.7 - Rank the following solenoids in order of...Ch. 22 - Two charged particles move at right angles to a...Ch. 22 - An electron moves with constant velocity through a...Ch. 22 - An electron moves with constant velocity through a...
Ch. 22 - Describe how the motion of a charged particle can...Ch. 22 - Explain how a charged particle moving in a circle...Ch. 22 - A current-carrying wire is placed in a region with...Ch. 22 - Predict/Explain Proton 1 moves with a speed v from...Ch. 22 - An electron moving in the positive x direction, at...Ch. 22 - Suppose particles A, B, and C in Figure 22-41 have...Ch. 22 - Referring to Figure 22-41, what is the sign of the...Ch. 22 - What is the acceleration of a proton moving with a...Ch. 22 - An electron moves at right angles to a magnetic...Ch. 22 - A negatively charged ion moves due north with a...Ch. 22 - Prob. 8PCECh. 22 - A 0.32-C particle moves with a speed of 16 m/s...Ch. 22 - A particle with a charge of 18C experiences a...Ch. 22 - An ion experiences a magnetic force of 6.2 1016 N...Ch. 22 - An electron moving with a speed of 4.0 105 m/s in...Ch. 22 - Predict/Calculate Two charged particles with...Ch. 22 - A 6.60-C particle moves through a region of space...Ch. 22 - Prob. 15PCECh. 22 - A velocity selector is to be constructed using a...Ch. 22 - Charged particles pass through a velocity selector...Ch. 22 - Prob. 18PCECh. 22 - Find the radius of the orbit when (a) an electron...Ch. 22 - BIO Predict/Calculate The artery in Figure 22-14...Ch. 22 - An electron accelerated from rest through a...Ch. 22 - A 10.2-C particle with a mass of 2.80 105 kg...Ch. 22 - Predict/Calculate When a charged particle enters a...Ch. 22 - A proton with a kinetic energy of 4.6 1016 J...Ch. 22 - Predict/Calculate An alpha particle (the nucleus...Ch. 22 - Prob. 26PCECh. 22 - Helical Motion As a model of the physics of the...Ch. 22 - What is the magnetic force exerted on a 2.35-m...Ch. 22 - A wire with a current of 2.1 A is at an angle of...Ch. 22 - The magnetic force exerted on a 1.2-m segment of...Ch. 22 - A 0.61 -m copper rod with a mass of 0.043 kg...Ch. 22 - The long, thin wire shown in Figure 22-45 is in a...Ch. 22 - A wire with a length of 3.8 m and a mass of 0.65...Ch. 22 - Loudspeaker Force The coil in a loudspeaker has 50...Ch. 22 - A high-voltage power line carries a current of 110...Ch. 22 - Prob. 36PCECh. 22 - For each of the three situations shown in Figure...Ch. 22 - A rectangular loop of 280 turns is 35 cm wide and...Ch. 22 - A single circular loop of radius 0.15 m carries a...Ch. 22 - In the previous problem, find the angle the plane...Ch. 22 - A square loop of wire 0.15 m on a side lies on a...Ch. 22 - Predict/Calculate Each of the 10 turns of wire in...Ch. 22 - Prob. 43PCECh. 22 - How much current must pass through a horizontal...Ch. 22 - You travel to the north magnetic pole of the...Ch. 22 - BIO Pacemaker Switches Some pacemakers employ...Ch. 22 - Two power lines, each 290 m in length, run...Ch. 22 - Predict/Calculate Consider the long, straight,...Ch. 22 - In Oersteds experiment, suppose that the compass...Ch. 22 - Prob. 50PCECh. 22 - Prob. 51PCECh. 22 - A loop of wire is connected to the terminals of a...Ch. 22 - Predict/Explain The number of turns in a solenoid...Ch. 22 - A circular coil of wire has a radius of 7.5 cm and...Ch. 22 - The solenoid for an automobile power door lock is...Ch. 22 - It is desired that a solenoid 25 cm long and with...Ch. 22 - A solenoid that is 72 cm long produces a magnetic...Ch. 22 - The maximum current in a superconducting solenoid...Ch. 22 - To construct a solenoid, you wrap insulated wire...Ch. 22 - CE A proton is to orbit the Earth at the equator...Ch. 22 - CE Figure 22-52 shows an electron beam whose...Ch. 22 - CE The three wires shown in Figure 22-53 are long...Ch. 22 - CE Each of the current-carrying wires in Figure...Ch. 22 - CE The four wires shown in Figure 22-54 are long...Ch. 22 - CE Each of the current-carrying wires in Figure...Ch. 22 - BIO Brain Function and Magnetic Fields Experiments...Ch. 22 - Credit-Card Magnetic Strips Experiments carried...Ch. 22 - Prob. 68GPCh. 22 - Prob. 69GPCh. 22 - CE A positively charged particle moves through a...Ch. 22 - CE A proton follows the path shown in Figure 22-56...Ch. 22 - CE Predict/Explain Suppose the initial speed of...Ch. 22 - BIO Magnetic Resonance Imaging An MRI (magnetic...Ch. 22 - Predict/Calculate A long, straight wire carries a...Ch. 22 - A particle with a charge of C moves with a speed...Ch. 22 - Predict/Calculate A beam of protons with various...Ch. 22 - Prob. 77GPCh. 22 - Repeat Problem 77 for the case where the current...Ch. 22 - Electric Motor A current of 2.4 A flows through a...Ch. 22 - Prob. 80GPCh. 22 - Lightning Bolts A powerful bolt of lightning can...Ch. 22 - Predict/Calculate Consider the two...Ch. 22 - Magnetars The astronomical object 4U014 + 61 has...Ch. 22 - Prob. 84GPCh. 22 - Solenoids produce magnetic fields that are...Ch. 22 - The current in a solenoid with 28 turns per...Ch. 22 - Prob. 87GPCh. 22 - Synchrotron Undulator In one portion of a...Ch. 22 - Predict/Calculate A single current-carrying...Ch. 22 - Prob. 90GPCh. 22 - A solenoid is made from a 25-m length of wire of...Ch. 22 - Magnetic Fields in the Bohr Model In the Bohr...Ch. 22 - A single-turn square loop carries a current of 18...Ch. 22 - Approximating a neuron by a straight wire, what...Ch. 22 - Suppose a neuron in the brain carries a current of...Ch. 22 - A given neuron in the brain carries a current of...Ch. 22 - A SQUID detects a magnetic field of 1.8 1014 T at...Ch. 22 - Predict/Calculate Referring to Example 22-7...Ch. 22 - Predict/Calculate Referring to Example 22-7...Ch. 22 - Referring to Quick Example 22-15 The current I1 is...Ch. 22 - Referring to Quick Example 22-15 The current I2 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
MAKE CONNECTIONS Review the description of meiosis (see Figure 10.8) and Mendels laws of segregation and indepe...
Campbell Biology in Focus (2nd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
Cosmic Perspective Fundamentals
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin copper rod 1.00 m long has a mass of 50.0 g. What is the minimum current in the rod that would allow it to levitate above the ground in a magnetic field of magnitude 0.100 T? (a) 1.20 A (b) 2.40 A (c) 4.90 A (d) 9.80 A (e) none of those answersarrow_forwardSolenoid A has length L and N turns, solenoid B has length 2L and N turns, and solenoid C has length L/2 and 2N turns. If each solenoid carries the same current, rank the magnitudes of the magnetic fields in the centers of the solenoids from largest to smallest.arrow_forwardReview. In studies of the possibility of migrating birds using the Earths magnetic field for navigation, birds have been fitted with coils as caps and collars as shown in Figure P22.39. (a) If the identical coils have radii of 1.20 cm and are 2.20 cm apart, with 50 turns of wire apiece, what current should they both carry to produce a magnetic field of 4.50 105 T halfway between them? (b) If the resistance of each coil is 210 V, what voltage should the battery supplying each coil have? (c) What power is delivered to each coil? Figure P22.39arrow_forward
- A toroid with an inner radius of 20 cm and an outer radius of 22 cm is tightly wound with one layer of wire that has a diameter of 0.25 mm. (a) How many turns are there on the toroid? (b) If the current through the toroid windings is 2.0 A, what is the strength of the magnetic field at the center of the toroid?arrow_forwardRank the magnitudes of the following magnetic fields from largest to smallest, noting any cases of equality. (a) the field 2 cm away from a long, straight wire carrying a current of 3 A (b) the Held at the center of a flat, compact, circular coil, 2 cm in radius, with 10 turns, carrying a current of 0.3 A (c) the field at the center of a solenoid 2 cm in radius and 200 cm long, with 1 000 turns, carrying a current of 0.3 A (d) the field at the center of a long, straight, metal bar, 2 cm in radius, carrying a current of 300 (e) a field of 1 mTarrow_forwardThe accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1= 3.0 cm and outer radius r2= 5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r = 2.0 cm. r = 4.0 cm. and r = 6.0 cm.arrow_forward
- A wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forwardA wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forwardCalculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forward
- Figure CQ19.7 shows a coaxial cable carrying current I in its inner conductor and a return current of the same magnitude in the opposite direction in the outer conductor. The magnetic field strength at r = r0 is Find the ratio B/B0, at (a) r = 2r0 and (b) r = 4r0. Figure CQ19.7arrow_forwardA long, straight wire carries a current I (Fig. OQ30.8). Which of the following statements is tine regarding the magnetic field due to the wire? More than one statement may be correct, (a) The magnitude is proportional to I/r, and the direction is out of the page at P. (b) The magnitude is proportional to I/r2, and the direction is out of the page at P. (c) The magnitude is proportional to I/r, and the direction is into the page at P. (d) The magnitude is proportional to I/r2, and the direction is into the page at P. (e) The magnitude is proportional to I, but does not depend on r.arrow_forwardA proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY