EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 71GP
In a simple model of the hydrogen atom, the electron revolves in a circular orbit around the proton with a speed of 2.2 × 106 m/s. Determine the radius of the electron’s orbit. [Hint: See Chapter 5 on circular motion.]
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1)
Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1?
Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^.
2)
Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2?
Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^.
3)
Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0?
Express your answer in terms of any or all of the following variables: k, q0, q1, q2.
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
Chapter 21 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 21.5 - Return to the Chapter-Opening Question, page 559,...Ch. 21.5 - Prob. 1BECh. 21.5 - Determine the magnitude and direction of the net...Ch. 21.5 - (a) Consider two point charges of the same...Ch. 21.6 - Four charges of equal magnitude, but possibly...Ch. 21 - If you charge a pocket comb by rubbing it with a...Ch. 21 - Why does a shirt or blouse taken from a clothes...Ch. 21 - Explain why fog or rain droplets tend to form...Ch. 21 - A positively charged rod is brought close to a...Ch. 21 - Why does a plastic ruler that has been rubbed with...
Ch. 21 - Contrast the net charge on a conductor to the free...Ch. 21 - Figures 217 and 218 show how a charged rod placed...Ch. 21 - When an electroscope is charged, the two leaves...Ch. 21 - Prob. 9QCh. 21 - Prob. 10QCh. 21 - The form of Coulombs law is very similar to that...Ch. 21 - We are not normally aware of the gravitational or...Ch. 21 - What experimental observations mentioned in the...Ch. 21 - When a charged ruler attracts small pieces of...Ch. 21 - Explain why the test charges we use when measuring...Ch. 21 - When determining an electric field, must we use a...Ch. 21 - Draw the electric field lines surrounding two...Ch. 21 - Assume that the two opposite charges in Fig. 2134a...Ch. 21 - Consider the electric field at the three points...Ch. 21 - Why can electric field lines never cross?Ch. 21 - Prob. 21QCh. 21 - Given two point charges, Q and 2Q, a distance ...Ch. 21 - Suppose the ring of Fig. 2128 has a uniformly...Ch. 21 - Consider a small positive test charge located on...Ch. 21 - We wish to determine the electric field at a point...Ch. 21 - In what ways does the electron motion in Example...Ch. 21 - Explain why there can be a net force on an...Ch. 21 - Describe the motion of the dipole shown in Fig....Ch. 21 - Prob. 1MCQCh. 21 - Prob. 2MCQCh. 21 - Prob. 3MCQCh. 21 - Prob. 4MCQCh. 21 - Prob. 5MCQCh. 21 - Prob. 6MCQCh. 21 - Prob. 7MCQCh. 21 - Prob. 8MCQCh. 21 - Prob. 9MCQCh. 21 - Prob. 10MCQCh. 21 - Prob. 11MCQCh. 21 - Prob. 12MCQCh. 21 - (I) What is the magnitude of the electric force of...Ch. 21 - Prob. 2PCh. 21 - Prob. 3PCh. 21 - Prob. 4PCh. 21 - Prob. 5PCh. 21 - Prob. 6PCh. 21 - Prob. 7PCh. 21 - Prob. 8PCh. 21 - Prob. 9PCh. 21 - (II) Compare the electric force holding the...Ch. 21 - (II) Two positive point charges are a fixed...Ch. 21 - Prob. 12PCh. 21 - Prob. 13PCh. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - (II) Two negative and two positive point charges...Ch. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - (III) Two positive charges +Q are affixed rigidly...Ch. 21 - Prob. 22PCh. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - Prob. 25PCh. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - Prob. 29PCh. 21 - (II) A long uniformly charged thread (linear...Ch. 21 - Prob. 31PCh. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - Prob. 35PCh. 21 - (II) A very thin line of charge lies along the x...Ch. 21 - (II) (a) Determine the electric field E at the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) Two parallel circular rings of radius R have...Ch. 21 - (II) You are given two unknown point charges, Q1...Ch. 21 - Prob. 41PCh. 21 - (II) (a) Two equal charges Q are positioned at...Ch. 21 - (II) At what position, x = xM, is the magnitude of...Ch. 21 - (II) The uniformly charged straight wire in...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) Use your result from Problem 46 to find the...Ch. 21 - (II) A thin rod bent into the shape of an arc of a...Ch. 21 - (III) Suppose a uniformly charged wire starts at...Ch. 21 - Prob. 50PCh. 21 - (III) A thin rod of length carries a total charge...Ch. 21 - (III) Uniform plane of charge. Charge is...Ch. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - Prob. 55PCh. 21 - Prob. 56PCh. 21 - Prob. 57PCh. 21 - (II) A positive charge q is placed at the center...Ch. 21 - (II) A dipole consists of charges +e and e...Ch. 21 - (II) The HCl molecule has a dipole moment of about...Ch. 21 - (II) An electric dipole, of dipole moment p and...Ch. 21 - (II) Suppose both charges in Fig. 2145 (for a...Ch. 21 - (III) Suppose a dipole p is placed in a nonuniform...Ch. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - How close must two electrons be if the electric...Ch. 21 - Prob. 67GPCh. 21 - A water droplet of radius 0.018 mm remains...Ch. 21 - Estimate the net force between the CO group and...Ch. 21 - Suppose that electrical attraction, rather than...Ch. 21 - In a simple model of the hydrogen atom, the...Ch. 21 - A positive point charge Q1 = 2.5 105 C is fixed...Ch. 21 - When clothes are removed from a dryer, a 40-g sock...Ch. 21 - Dry air will break down and generate a spark if...Ch. 21 - Prob. 76GPCh. 21 - Packing material made of pieces of foamed...Ch. 21 - One type of electric quadrupole consists of two...Ch. 21 - Suppose electrons enter a uniform electric field...Ch. 21 - Prob. 80GPCh. 21 - Three very large square planes of charge are...Ch. 21 - Prob. 82GPCh. 21 - Prob. 83GPCh. 21 - Prob. 84GPCh. 21 - Prob. 85GPCh. 21 - A one-dimensional row of positive ions, each with...Ch. 21 - Prob. 87GPCh. 21 - Prob. 88GPCh. 21 - Prob. 89GPCh. 21 - Prob. 90GPCh. 21 - Prob. 91GPCh. 21 - Prob. 92GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Explain why genetic Variation within a population is a prerequisite for evolution.
Campbell Biology (11th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- 6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward
- 4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY