(a)
Interpretation:
The cell potential for each given half-cell has to be calculated at temperature
Concept Introduction:
An
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
Redox reaction: Redox reaction is a type of
Generally, the anode compartment with oxidation components are written on the left side of the salt bridge and the cathode compartment with reduction components are notified on the right of the salt bridge. The cathode and anode are separated by using the double vertical line which actually represents the salt bridge. The species of different phases are notified by using a single vertical line in the cell notation.
(b)
Interpretation:
For given two cells, the negative electrode present in each cell has to be identified.
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
Redox reaction: Redox reaction is a type of chemical reaction, where both the oxidation and reduction occur at the same time. In a redox reaction, one of the reactant is oxidized and the other is reduced simultaneously.
Generally, the anode compartment with oxidation components are written on the left side of the salt bridge and the cathode compartment with reduction components are notified on the right of the salt bridge. The cathode and anode are separated by using the double vertical line which actually represents the salt bridge. The species of different phases are notified by using a single vertical line in the cell notation.
(c)
Interpretation:
The response of cell voltage when given solution is added to
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
Redox reaction: Redox reaction is a type of chemical reaction, where both the oxidation and reduction occur at the same time. In a redox reaction, one of the reactant is oxidized and the other is reduced simultaneously.
Generally, the anode compartment with oxidation components are written on the left side of the salt bridge and the cathode compartment with reduction components are notified on the right of the salt bridge. The cathode and anode are separated by using the double vertical line which actually represents the salt bridge. The species of different phases are notified by using a single vertical line in the cell notation.
(d)
Interpretation:
The cell voltage value has to be calculated when enough amount of given solution is added to
Concept Introduction:
An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.
Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.
Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.
Redox reaction: Redox reaction is a type of chemical reaction, where both the oxidation and reduction occur at the same time. In a redox reaction, one of the reactant is oxidized and the other is reduced simultaneously.
The Standard Gibb’s free energy change and the standard cell potential are related as followed:
n - Number of electrons involved per equivalent of the net redox reaction in the cell
F - Faraday’s Constant (96500 C)
The Nernst equation depicts the relationship between
The cell voltage value is

Want to see the full answer?
Check out a sample textbook solution
Chapter 21 Solutions
CHEMISTRY MOLECULAR NATURE CONNECT ACCES
- Don't used hand raiting and don't used Ai solutionarrow_forward2' P17E.6 The oxidation of NO to NO 2 2 NO(g) + O2(g) → 2NO2(g), proceeds by the following mechanism: NO + NO → N₂O₂ k₁ N2O2 NO NO K = N2O2 + O2 → NO2 + NO₂ Ко Verify that application of the steady-state approximation to the intermediate N2O2 results in the rate law d[NO₂] _ 2kk₁[NO][O₂] = dt k+k₁₂[O₂]arrow_forwardPLEASE ANSWER BOTH i) and ii) !!!!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





