PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The bent flat bar rotates about a fixed axis through point O. At the instant when 0 = 30°, the bar
has a clockwise angular velocity and the acceleration of point A on the bar is āд −4.2ĵ ft/sec².
=
If ẞ = 120°, b = 3 ft, and c = 2 ft, determine the vector of velocity of point A for that instant.
(A = 3.08 -2.28 ft/sec)
y
x
β
b
Ꮎ
A
C
At the instant shown, the shaft and plate rotates with an
angular velocity of 19 rad/s and angular acceleration of
9 rad/s². (Figure 1)
Figure
X
D
0.4 m
B
0
0.4 m
a
0.3 m
< 1 of 1
0.6 m
0.2 m
C
0.3 m
Part A
Determine the velocity of point D located on the corner of the plate at this instant.
Enter the x, y, and z components of the velocity in meters per second to three significant figures
separated by commas.
► View Available Hint(s)
(UD), (UD)y, (UD) z = 6.51,4.89,1.63 m/s
Submit
Previous Answers
✓ Correct
Here we learn how to determine the velocity of a point on a rigid body revolving with an angular
acceleration about a fixed axis in three dimensions.
Part B
Determine the acceleration of point D located on the corner of the plate at this instant.
Enter the x, y, and z components of the acceleration in meters per second squared to three significant
figures separated by commas.
► View Available Hint(s)
(ap)z, (ap)y, (ap)₂ =
[Π ΑΣΦ
| ↓↑ vec
Submit Previous Answers
X Incorrect; Try…
2. The angular velocity of the drum is increased uniformly
from 6 rad/s when t = 0 to 10 rad/s when t = 4 s. Find the
magnitudes of the velocity and acceleration of points A and B
on the belt the instant when t = 3 s.
4 in.
Knowledge Booster
Similar questions
- At the instant shown, the arm OA of the conveyor belt is rotating about the z axis with a constant angular velocity w₁ = 5.6 rad/s, while at the same instant the arm is rotating upward at a constant rate w2 = 4.4 rad/s. (Figure 1) Figure 0₁ r = 6 ft 10=45° A 1 of 1 Part A If the conveyor is running at a constant rate r = 5 ft/s, determine the velocity of the package P at the instant shown. Neglect the size of the package. Enter the x, y, and z components of the velocity in feet per second to three significant figures separated by commas. ΠΑΣΦ11 vp = Submit Part B ap = Request Answer Submit Determine the acceleration of the package P at the instant shown. Enter the x, y, and z components of the acceleration in feet per second squared to three significant figures separated by commas. IVE ΑΣΦ1 Request Answer vec < Return to Assignment vec ? Provide Feedback ft/s ? ft/s²arrow_forward5arrow_forwardAt the instant shown, the shaft and plate rotates with an angular velocity of 14 rad/s and angular acceleration of 7 rad/s². (Figure 1) Figure X D 0.4 m B 0.4 m α 0.3 m 0.6 m 0.2 m 0.3 m 1 of 1 Part A Determine the velocity of point D located on the corner of the plate at this instant. Enter the x, y, and z components of the velocity separated by commas. VE ΑΣΦ ↓↑ vec (VD)x, (VD)y, (VD)z: Submit Part B Request Answer Determine the acceleration of point D located on the corner of the plate at this instant. Enter the x, y, and z components of the velocity separated by commas. (ap)x, (aD)y, (ad) z = Submit Provide Feedback Request Answer = VO ΑΣΦ ↓↑ vec ? m/s m/s²arrow_forward
- The ladder of the fire truck rotates around the z axis with an angular velocity of w₁ = 0.12 rad/s, which is increasing at 0.24 rad/s². At the same instant it is rotating upwards at w₂ = 0.56 rad/s while increasing at 0.44 rad/s². (Figure 1) Figure a 40 ft 30° 1 of 1 Part A Determine the velocity of point A located at the top of the ladder at this instant. Enter the components of the velocity in feet per second to three significant figures separated by commas. VAZ, VAy, VAz = Submit Request Answer Part B ■A£¢↓↑vec Az Ay, Az = Determine the acceleration of point A located at the top of the ladder at this instant. Enter the components of the acceleration in feet per second squared to three significant figures separated by commas. 15] ΑΣΦΗ ? vec ft/s ? ft/s²arrow_forwardAt the instant shown, the arm OA of the conveyor belt is rotating about the z axis with a constant angular velocity w 6.5 rad/s, while at the same instant the arm is rotating upward at a constant rate w₂=3.9 rad/s (Figure 1) Figure 0-45° ▼ Part A If the conveyor is running at a rate r = 5 ft/s, which is increasing at F-8 ft/s². determine the velocity of the package Pat the instant shown. Neglect the size of the package. Enter the z, y, and z components of the velocity in feeet per second to three significant figures separated by commas. vp Part B Submit LVE| ΑΣΦ | 11 ap vec Submit Request Answer Determine the acceleration of the package P at the instant shown Enter the z, y, and a components of the acceleration in feet per second squared to three significant figures separated by commas. IVE] ΑΣΦ | 11 vec 52 C Request Answer ft/s ? ft/s²arrow_forwardEnd A of the 3.6-ft link has a velocity of 3.7 ft sec in the direction shown. At the same instant, end B has a velocity whose magnitude is 4.4 ft/sec as indicated. Find the angular velocity w of the link in two ways. The angular velocity of the link is positive if counterclockwise, negative if clockwise. A VA = 3.7 ft/sec 40° Answer: w= 3.6' B B VB = 4.4 ft/sec rad/secarrow_forward
- The disk rotates about the shaft S, while the shaft is turning about the z axis at a rate of w₂ = 6 rad/s, which is increasing at a = 2.5 rad/s². No slipping occurs. (Figure 1) Figure B 0.1 m S tiff 83 0.5 m 0.1 m 1 of 1 Part A Determine the x, y, and z components of the velocity of point B on the disk at the instant shown using scalar notation. Express your answers using three significant figures separated by commas. (VB)z, (UB)y, (UB)₂ = (0,6,0) Submit 17 ΑΣΦ ↓↑ Part B Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining (aв)z, (aв)y, (aB)₂ = vec Submit Request Answer Determine the x, y, and z components of the acceleration of point B on the disk at the instant shown using scalar notation. Express your answers using three significant figures separated by commas. ? A vec m/s ? m/s²arrow_forward- Please HELP!! - Once answered correctly will UPVOTE!!arrow_forwardAt the instant shown, the arm OA of the conveyor belt is rotating about the z axis with a constant angular velocity w₁ = 6.1 rad/s, while at the same instant the arm is rotating upward at a constant rate w2 = 3.5 rad/s. (Figure 1) Figure 0₂₁ 6032 r = 6 ft 8=45° 1 of 1 Part If the conveyor is running at a rate r = 5 ft/s, which is increasing at * = 8 ft/s², determine the velocity of the package P at the instant shown. Neglect the size of the package. Enter the x, y, and z components of the velocity in feeet per second to three significant figures separated by commas. vp = Submit Part B ap = — ΑΣΦ Submit Request Answer ↓↑ — ΑΣΦ Determine the acceleration of the package P at the instant shown. Enter the x, y, and z components of the acceleration in feet per second squared to three significant figures separated by commas. Request Answer < Return to Assignment vec vec www. Provide Feedback ? ft/s ? ft/s²arrow_forward
- A disk oscillates about its axis of rotation given by its angular acceleration of ∝ = -kθ. First determine the value of k for which, w= 16 rad/s when θ = 0 and θ = 6 radians when w= 0. Then determine the angular velocity when θ = 1.2 radians.arrow_forwardAt the instant shown on the right, the wheel rotates about the fixed axis C with clockwise angular velocity of w = 8 rad/s and a clockwise angular acceleration of 16rad/s^2. The point B, located at the distance of r = 15cm form the center is attached to the bar AB, which has a length of L = 50cm. The slider A is constrained to move horizontally. What is the speed and acceleration of the slider A?arrow_forwardThe relative acceleration of point A with respect to point B of the disk in Figure 1 is given as as/B = 3.347i + 1.283j. If the disk rolls without slipping, determine the angular velocity and angular acceleration of the disk at the instant. If, in other case, the disk rolls with slipping and the vM = 2 m/s to the left and vo = 2 m/s to the right, do you think that the process of determining its angular velocity and angular acceleration becomes easier or harder? A 45° B L--x M 0.2 m'0.2 m Figure 1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY