
Concept explainers
Conceptual Example 20.1 shows that the gravitational force between an electron and a proton is about 10−40 times weaker than the electric force between them. Since matter consists largely of electrons and protons, why is the gravitational force important at all?

To explain: The importance of gravitational force.
Answer to Problem 1FTD
Explanation of Solution
Gravitational force is the weakest of all known forces in nature. The gravitational force is responsible for holding all the bodies. The gravitational force follows the inverse square law, just like the electrostatic force, but the difference in magnitude is very significant. The gravitational force between a proton and electron is
The strength of gravity decreases with distance but if the body is massive, it will have a higher magnitude of gravitational force. Gravity is important as it gives the body its weight. It is extends throughout the whole space and all bodies regardless of its size experience the gravitational force.
Conclusion:
Therefore, gravitational force is important because it acts on all the bodies and it binds everything in the whole universe together.
Want to see more full solutions like this?
Chapter 20 Solutions
Essential University Physics: Volume 2 (3rd Edition)
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Anatomy & Physiology (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
Campbell Essential Biology (7th Edition)
Campbell Biology (11th Edition)
- Please draw the sketch and a FBDarrow_forward8.30 Asteroid Collision. Two asteroids of equal mass in the aster- oid belt between Mars and Jupiter collide with a glancing blow. Asteroid A, which was initially traveling at 40.0 m/s, is deflected 30.0° from its original direction, while asteroid B, which was initially at rest, travels at 45.0° to the original direction of A (Fig. E8.30). (a) Find the speed of each asteroid after the collision. (b) What fraction of the original kinetic energy of asteroid A dissipates during this collision? Figure E8.30 A A 40.0 m/s 30.0° B T- 45.0°arrow_forwardPlease draw a sketch and a FBDarrow_forward
- Please draw a sketch and a FBDarrow_forward8.69 Spheres A (mass 0.020 kg), B (mass 0.030 kg), and C (mass 0.050 kg) are approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are given in Fig. P8.69. All three spheres arrive at the origin at the same time and stick together. (a) What must the x- and y-components of the initial velocity of C be if all three objects are to end up moving at 0.50 m/s in the +x-direction after the col- lision? (b) If C has the velocity found in part (a), what is the change in the kinetic energy of the system of three spheres as a result of the collision? Figure P8.69 UC C B UB=0.50 m/s 60° VA = 1.50 m/s Aarrow_forward8.36 A 1050 kg sports car is moving westbound at 15.0 m/s on a level road when it collides with a 6320 kg truck driving east on the same road at 10.0 m/s. The two vehicles remain locked together after the collision. (a) What is the velocity (magnitude and direction) of the two vehicles just after the collision? (b) At what speed should the truck have been moving so that both it and the car are stopped in the collision? (c) Find the change in kinetic energy of the system of two vehicles for the situ- ations of parts (a) and (b). For which situation is the change in kinetic energy greater in magnitude?arrow_forward
- 8.10 ⚫ A bat strikes a 0.145 kg baseball. Just before impact, the ball is traveling horizontally to the right at 40.0 m/s; when it leaves the bat, the ball is traveling to the left at an angle of 30° above horizontal with a speed of 52.0 m/s. If the ball and bat are in contact for 1.75 ms, find the horizontal and vertical components of the average force on the ball.arrow_forwardL1=5.2m L2=0.5m L3=1.7m L4=0.6m L5=0.5m L6=0.5m V2=5.4m/sarrow_forwardM1=0.45M2=1.9M3=0.59arrow_forward
- I don't know why part A is wrong and can you help me with part B as wellarrow_forwarda 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forwarda 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





