
Chemistry: The Central Science (13th Edition)
13th Edition
ISBN: 9780321910417
Author: Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, Matthew E. Stoltzfus
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 1DE
(a)
Interpretation Introduction
To determine: The metal that is more ductile between
(a)
Expert Solution

Answer to Problem 1DE
Solution:
Explanation of Solution
The ductility of an element depends upon the bonding between the metal atoms which in turn depend upon the number of valence electrons. Greater the number of valence electrons, greater will be the bonding between the metal atoms and less ductile is the metal. The valence electrons present in Ag atom is 1 and the valence electrons present in Mo atom is 6 . The number of valence electrons present in Ag atom is less as compared to Mo and the weaker metallic bonding present in Ag metal.
Hence, theAg metal is more ductile as compared to Mo metal.
Hence, the
Conclusion
(b)
Interpretation Introduction
To determine: The metal that is more ductile between
(b)
Expert Solution

Answer to Problem 1DE
Solution:
Explanation of Solution
The ductility of an element depends upon the bonding between the metal atoms which in turn depend upon the number of valence electrons. Greater the number of valence electrons, greater will be the bonding between the metal atoms and less ductile is the metal. The valence electrons present in Zn atom is 2 and the valence electrons present in Si atom is 4 . The number of valence electrons present in Zn atom is less as compared to Si and the weaker metallic bonding present in Zn metal.
Hence, theZn metal is more ductile as compared to Si metal.
Hence, the
Conclusion
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Identify the unknown compound from its IR and proton NMR spectra.
C4H6O:
'H NMR: 82.43 (1H, t, J = 2 Hz); 8 3.41 (3H, s); 8 4.10 (2H, d, J = 2 Hz)
IR: 2125, 3300 cm¹
The C4H6O compound liberates a gas when treated with C2H5 MgBr.
Draw the unknown compound.
Select
Draw
с
H
Templates
More
Please help with number 6 I got a negative number could that be right?
1,4-Dimethyl-1,3-cyclohexadiene can undergo 1,2- or 1,4-addition with hydrogen halides. (a) 1,2-Addition i. Draw the carbocation intermediate(s) formed during the 1,2-addition of hydrobromic acid to 1,4-dimethyl-1,3-cyclohexadiene. ii. What is the major 1,2-addition product formed during the reaction in (i)? (b) 1,4-Addition i. Draw the carbocation intermediate(s) formed during the 1,4-addition of hydrobromic acid to 1,4-dimethyl-1,3-cyclohexadiene. ii. What is the major 1,4-addition product formed from the reaction in (i)? (c) What is the kinetic product from the reaction of one mole of hydrobromic acid with 1,4-dimethyl-1,3-cyclohexadiene? Explain your reasoning. (d) What is the thermodynamic product from the reaction of one mole of hydrobro-mic acid with 1,4-dimethyl-1,3-cyclohexadiene? Explain your reasoning. (e) What major product will result when 1,4-dimethyl-1,3-cyclohexadiene is treated with one mole of hydrobromic acid at - 78 deg * C ? Explain your reasoning.
Chapter 20 Solutions
Chemistry: The Central Science (13th Edition)
Ch. 20.1 - What is the reducing agent in the following...Ch. 20.1 - Prob. 20.1.2PECh. 20.2 - Prob. 20.2.1PECh. 20.2 - Prob. 20.2.2PECh. 20.2 - Prob. 20.3.1PECh. 20.2 - Prob. 20.3.2PECh. 20.3 - 12.11 Covalent bonding occurs in both molecular...Ch. 20.3 - Prob. 20.4.2PECh. 20.4 - 12.13 What kinds of attractive forces exist...Ch. 20.4 - Prob. 20.5.2PE
Ch. 20.4 - Prob. 20.6.1PECh. 20.4 - Prob. 20.6.2PECh. 20.4 - Prob. 20.7.1PECh. 20.4 - Prob. 20.7.2PECh. 20.4 - Prob. 20.8.1PECh. 20.4 - Amorphous silica, SiO2, has a density of about...Ch. 20.5 - Two patterns of packing for two different circles...Ch. 20.5 - Prob. 20.9.2PECh. 20.5 - Prob. 20.10.1PECh. 20.5 - Prob. 20.10.2PECh. 20.6 - Prob. 20.11.1PECh. 20.6 - Prob. 20.11.2PECh. 20.6 - Prob. 20.12.1PECh. 20.6 - Prob. 20.12.2PECh. 20.6 - Prob. 20.13.1PECh. 20.6 - Prob. 20.13.2PECh. 20.9 - Prob. 20.14.1PECh. 20.9 - Prob. 20.14.2PECh. 20 - 12.53 Which would you expect to be the more...Ch. 20 - 12.54 Which of the following statements does not...Ch. 20 - Prob. 2ECh. 20 - Prob. 3ECh. 20 - Prob. 4ECh. 20 - Prob. 5ECh. 20 - Prob. 6ECh. 20 - Prob. 7ECh. 20 - Prob. 8ECh. 20 - Prob. 9ECh. 20 - Prob. 10ECh. 20 - Prob. 11ECh. 20 - Prob. 12ECh. 20 - Prob. 13ECh. 20 - Prob. 14ECh. 20 - Prob. 15ECh. 20 - Prob. 16ECh. 20 - Prob. 17ECh. 20 - Prob. 18ECh. 20 - Prob. 19ECh. 20 - Prob. 20ECh. 20 - Prob. 21ECh. 20 - Prob. 22ECh. 20 - Prob. 23ECh. 20 - Prob. 24ECh. 20 - Prob. 25ECh. 20 - 12.61 A particular form of cinnabar (HgS) adopts...Ch. 20 - Prob. 27ECh. 20 - Prob. 28ECh. 20 - Prob. 29ECh. 20 - Prob. 30ECh. 20 - (a) What does the term electromotive force mean?...Ch. 20 - Prob. 32ECh. 20 - Prob. 33ECh. 20 - Prob. 34ECh. 20 - Prob. 35ECh. 20 - Prob. 36ECh. 20 - Prob. 37ECh. 20 - Prob. 38ECh. 20 - Prob. 39ECh. 20 - Prob. 40ECh. 20 - Prob. 41ECh. 20 - Prob. 42ECh. 20 - Prob. 43ECh. 20 - Prob. 44ECh. 20 - Prob. 45ECh. 20 - Prob. 46ECh. 20 - Prob. 47ECh. 20 - Prob. 48ECh. 20 - 12.86 Write a balanced chemical equation for the...Ch. 20 - Prob. 50ECh. 20 - Prob. 51ECh. 20 - Prob. 52ECh. 20 - Prob. 53ECh. 20 - Prob. 54ECh. 20 - Prob. 55ECh. 20 - Prob. 56ECh. 20 - Explain why “bands” may not be the most accurate...Ch. 20 - Prob. 58ECh. 20 - Prob. 59ECh. 20 - Prob. 60ECh. 20 - An ideal quantum dot for use in TVs does not...Ch. 20 - Prob. 62ECh. 20 - Prob. 63ECh. 20 - Prob. 64ECh. 20 - Prob. 65ECh. 20 - Prob. 66ECh. 20 - Pure iron crystallizes in a body-centered cubic...Ch. 20 - Prob. 68ECh. 20 - Prob. 69ECh. 20 - What type of latticeprimitive cubic, body-centered...Ch. 20 - Prob. 71ECh. 20 - Prob. 72ECh. 20 - Prob. 73ECh. 20 - Energy bands are considered continuous due to the...Ch. 20 - Prob. 75ECh. 20 - Prob. 76ECh. 20 - Prob. 77ECh. 20 - Prob. 78ECh. 20 - Prob. 79ECh. 20 - Prob. 80ECh. 20 - Prob. 81ECh. 20 - Prob. 82ECh. 20 - The karat scale used to describe gold alloys is...Ch. 20 - 12.125 Spinel is a mineral that contains 37.9% AI,...Ch. 20 - Prob. 85ECh. 20 - Prob. 86ECh. 20 - Prob. 87ECh. 20 - A plumber’s handbook states that you should not...Ch. 20 - Silicon has the diamond structure with a unit cell...Ch. 20 - Prob. 90ECh. 20 - Prob. 91ECh. 20 - Prob. 92ECh. 20 - Prob. 93ECh. 20 - Prob. 94ECh. 20 - Prob. 95ECh. 20 - Prob. 96ECh. 20 - Prob. 97AECh. 20 - Prob. 98AECh. 20 - Prob. 99AECh. 20 - Prob. 100AECh. 20 - Prob. 101AECh. 20 - Which of the three-dimensional primitive lattices...Ch. 20 - Prob. 103AECh. 20 - 12.27 What is the minimum number of atoms that...Ch. 20 - 12.28 What is the minimum number of atoms that...Ch. 20 - Prob. 106AECh. 20 - Prob. 107AECh. 20 - Prob. 108AECh. 20 - Prob. 109AECh. 20 - Prob. 110AECh. 20 - Prob. 111IECh. 20 - Prob. 112IECh. 20 - Prob. 113IECh. 20 - Prob. 114IECh. 20 - Prob. 115IECh. 20 - Prob. 116IECh. 20 - Prob. 117IECh. 20 - Prob. 118IECh. 20 - Prob. 119IE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Give the product of the bimolecular elimination from each of the isomeric halogenated compounds. Reaction A Reaction B. КОВ CH₂ HotBu +B+ ко HOIBU +Br+ Templates More QQQ Select Cv Templates More Cras QQQ One of these compounds undergoes elimination 50x faster than the other. Which one and why? Reaction A because the conformation needed for elimination places the phenyl groups and to each other Reaction A because the conformation needed for elimination places the phenyl groups gauche to each other. ◇ Reaction B because the conformation needed for elimination places the phenyl groups gach to each other. Reaction B because the conformation needed for elimination places the phenyl groups anti to each other.arrow_forwardFive isomeric alkenes. A through each undergo catalytic hydrogenation to give 2-methylpentane The IR spectra of these five alkenes have the key absorptions (in cm Compound Compound A –912. (§), 994 (5), 1643 (%), 3077 (1) Compound B 833 (3), 1667 (W), 3050 (weak shoulder on C-Habsorption) Compound C Compound D) –714 (5), 1665 (w), 3010 (m) 885 (3), 1650 (m), 3086 (m) 967 (5), no aharption 1600 to 1700, 3040 (m) Compound K Match each compound to the data presented. Compound A Compound B Compound C Compound D Compoundarrow_forward7. The three sets of replicate results below were accumulated for the analysis of the same sample. Pool these data to obtain the most efficient estimate of the mean analyte content and the standard deviation. Lead content/ppm: Set 1 Set 2 Set 3 1. 9.76 9.87 9.85 2. 9.42 9.64 9.91 3. 9.53 9.71 9.42 9.81 9.49arrow_forward
- Draw the Zaitsev product famed when 2,3-dimethylpentan-3-of undergoes an El dehydration. CH₂ E1 OH H₁PO₁ Select Draw Templates More QQQ +H₂Oarrow_forwardComplete the clean-pushing mechanism for the given ether synthesia from propanol in concentrated sulfurica140°C by adding any mining aloms, bands, charges, nonbonding electron pairs, and curved arrows. Draw hydrogen bonded to cayan, when applicable. ore 11,0 HPC Step 1: Draw curved arrows Step 2: Complete the intend carved Q2Q 56 QQQ Step 3: Complete the intermediate and add curved Step 4: Modify the structures to draw the QQQ QQQarrow_forward6. In an experiment the following replicate set of volume measurements (cm3) was recorded: (25.35, 25.80, 25.28, 25.50, 25.45, 25.43) A. Calculate the mean of the raw data. B. Using the rejection quotient (Q-test) reject any questionable results. C. Recalculate the mean and compare it with the value obtained in 2(a).arrow_forward
- A student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. • If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T G OH де OH This transformation can't be done in one step.arrow_forwardMacmillan Leaming Draw the major organic product of the reaction. 1. CH3CH2MgBr 2. H+ - G Select Draw Templates More H о QQarrow_forwardDraw the condensed structure of 3-hydroxy-2-butanone. Click anywhere to draw the first atom of your structure.arrow_forward
- Give the expected major product of reaction of 2,2-dimethylcyclopropane with each of the following reagents. 2. Reaction with dilute H₂SO, in methanol. Select Draw Templates More CHC Erase QQQ c. Reaction with dilute aqueous HBr. Select Drew Templates More Era c QQQ b. Reaction with NaOCH, in methanol. Select Draw Templates More d. Reaction with concentrated HBr. Select Draw Templates More En a QQQ e. Reaction with CH, Mg1, then H*, H₂O 1. Reaction with CH,Li, then H', H₂Oarrow_forwardWrite the systematic name of each organic molecule: structure O OH OH name X ☐arrow_forwardMacmillan Learning One of the molecules shown can be made using the Williamson ether synthesis. Identify the ether and draw the starting materials. А со C Strategy: Review the reagents, mechanism and steps of the Williamson ether synthesis. Determine which of the molecules can be made using the steps. Then analyze the two possible disconnection strategies and deduce the starting materials. Identify the superior route. Step 6: Put it all together. Complete the two-step synthesis by selecting the reagents and starting materials. C 1. 2. Answer Bank NaH NaOH NaOCH, снен, сен, он Сиси, Сне (СН), СОН (Сн, Свarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY