Concept explainers
Four lightweight balls A, B, C, and D are suspended by threads. Ball A has been touched by a plastic rod that was rubbed with wool. When the balls are brought close together, without touching, the following observations are made:
- Balls B, C, and D are attracted to ball A.
- Balls B and D have no effect on each other.
- Ball B is attracted to ball C.
What are the charge states (positive, negative, or neutral) of balls A, B, C, and D? Explain.
To explain: The charge states of balls A, B, C and D.
Answer to Problem 1CQ
The charge states of balls A, B, C and D are negative, neutral, positive, and neutral respectively.
Explanation of Solution
The plastic rod acquires a negative charge, when it is rubbed by wool. Initially, when the rod touches the ball A, it gets polarized and acquires a negative charge. Hence, the charge on ball A is negative.
Balls B, C, and D are attached to ball A:
Balls B, C, and D are attached to ball A due to the attraction force because unlike charges attract. This is possible only if charges on balls B, C, and D are either positive or neutral.
Balls B and D have no effect on each other:
This statement indicates that the balls B and D neither attracted nor repulsed with each other. The like charges repel and unlike charges attract. Therefore, balls B and C posses no charge either positive or negative. Hence, balls B and D are neutral.
Ball B is attracted to ball C:
This statements concludes that the ball C is charged and that is the reason the neutral ball B is attracted towards C. From first statement, it is obvious that the charge of ball C must be either positive or neutral. Ball C is not neutral and hence the charge on ball C is positive.
Conclusion:
Thus, the charge states of balls A, B, C and D are negative, neutral, positive, and neutral respectively.
Want to see more full solutions like this?
Chapter 20 Solutions
College Physics: A Strategic Approach (4th Edition)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Chemistry: The Central Science (14th Edition)
Organic Chemistry (8th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Microbiology with Diseases by Body System (5th Edition)
- A sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forwardTwo small, identical metal balls with charges 5.0 C and 15.0 C are held in place 1.0 m apart. In an experiment, they are connected for a short time by a conducting wire. a. What will be the charge on each ball after this experiment? b. By what factor will the magnitude of the electrostatic force on either ball change after this experiment is performed?arrow_forwardTwo 25.0-g copper spheres are placed 75.0 cm apart. Each copper atom has 29 electrons, and the molar mass of copper is 63.5463 g/mol. What fraction of the electrons from the first sphere must be transferred to the second sphere for the net electrostatic force between the spheres to equal 100 kN?arrow_forward
- Initially a glass rod and a piece of silk are neutral. After you rub the silk against the rod, the glass rod has a surplus of 3.33 1011 protons. What is the charge q of the silk?arrow_forwardAn electroscope is a device used to measure the (relative) charge on an object (Fig. P23.20). The electroscope consists of two metal rods held in an insulated stand. The bent rod is fixed, and the straight rod is attached to the bent rod by a pivot. The straight rod is free to rotate. When a positively charged object is brought close to the electroscope, the straight movable rod rotates. Explain your answers to these questions: a. Why does the rod rotate in Figure P23.20? b. If the positively charged object is removed, what happens to the electroscope? c. If a negatively charged object replaces the positively charged object in Figure P23.20, what happens to the electroscope? d. If a charged object touches the top of the fixed conducting rod and is then removed, what happens to the electroscope?arrow_forwardFour balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forward
- Three charged spheres are at rest in a plane as shown in Figure P23.70. Spheres A and B are fixed, but sphere C is attached to the ceiling by a lightweight thread. The tension in the string is 0.240 N. Spheres A and B have charges qA = 28.0 nC and qB = 28.0 nC. What charge is carried by sphere C?arrow_forwardYou are working on a research project in which you must control the direction of travel of electrons using deflection plates. You have devised the apparatus shown in Figure P22.28. The plates are of length = 0.500 m and are separated by a distance d = 3.00 cm. Electrons are fired at vi = 5.00 106 m/s into a uniform electric field from the left edge of the lower, positive plate, aimed directly at the right edge of the upper, negative plate. Therefore, if there is no electric field between the plates, the electrons will follow the broken line in the figure. With an electric field existing between the plates, the electrons will follow a curved path, bending downward. You need to determine (a) the range of angles over which the electron can leave the apparatus and (b) the electric field required to give the maximum possible deviation angle. Figure P22.28arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forward
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardEach of the following statements is related to conductors in electrostatic equilibrium. Choose the words that make each statement correct. (i) The net charge is always zero [(a) inside; (b) on] the surface of an isolated conductor. (ii) The electric field is always zero [(c) inside; (d) just outside] a perfect conductor. (iii) The charge density on the surface of an isolated, charged conductor is highest where the surface is [(e) sharpest; (f) smoothest].arrow_forwardThe fundamental charge is e = 1.60 1019 C. Identify whether each of the following statements is true or false. (a) Its possible to transfer electric charge to an object so that its net electric charge is 7.5 times the fundamental electric charge, e. (b) All protons have a charge of +e. (c) Electrons in a conductor have a charge of e while electrons in an insulator have no charge.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning