
Concept explainers
Describe the similarities and differences between homologous recombination involving sister chromatid exchange (SCE) and that involving homologs. Would you expect the same types of proteins to be involved in both processes? Explain.

To review:
The similarities and differences between the recombination and the sister chromatid exchange in respect of homologs. The explanation about the same type of proteins that are involved in these processes.
Introduction:
Amino acids are the building blocks of proteins that play a significant role in an organism’s body by carrying out many functions like providing structure to the cells and help in regulating the mechanism of organs and tissues. The chemical composition of proteins was first described by Gerardus Johannes Mulder.
Explanation of Solution
Homologous recombination is a type of genetic recombination, which helps in repairing of breaks inside DNA (deoxyribonucleic acid) strands. In this process, the sequences of nucleotides are exchanged between the two identical molecules of DNA. The sister chromatid exchange is a type of exchange, in which the exchange of genetic material occurs between the two similar sister chromatids. The similarities and differences between homologous recombination and sister chromatid exchange are given below:-
Differences:-
Homologous recombination | Sister-chromatid exchange |
Homologous recombination gives rise to new allele combinations, after the crossing over process | Sister chromatid exchange no new allele formation occurs because the chromatids are similar. |
Similarities:-
The sister chromatid exchange and homologous recombination show some similarities at their molecular level. In both the processes, the segment of genetic material or DNA first follows the lineup part and then undergo the crossing over process, in this way they show resemblance.
The sister chromatid exchange and homologous recombination show resemblance at the molecular level, so, both the processes involve the same type of proteins for carrying their role.
Therefore, it can be concluded that both processes show some similarities and resemblances on different levels, and it is estimated that both the processes are carried out by the same type of proteins.
Want to see more full solutions like this?
Chapter 20 Solutions
Genetics: Analysis and Principles
- What is this?arrow_forwardMolecular Biology A-C components of the question are corresponding to attached image labeled 1. D component of the question is corresponding to attached image labeled 2. For a eukaryotic mRNA, the sequences is as follows where AUGrepresents the start codon, the yellow is the Kozak sequence and (XXX) just represents any codonfor an amino acid (no stop codons here). G-cap and polyA tail are not shown A. How long is the peptide produced?B. What is the function (a sentence) of the UAA highlighted in blue?C. If the sequence highlighted in blue were changed from UAA to UAG, how would that affecttranslation? D. (1) The sequence highlighted in yellow above is moved to a new position indicated below. Howwould that affect translation? (2) How long would be the protein produced from this new mRNA? Thank youarrow_forwardMolecular Biology Question Explain why the cell doesn’t need 61 tRNAs (one for each codon). Please help. Thank youarrow_forward
- Molecular Biology You discover a disease causing mutation (indicated by the arrow) that alters splicing of its mRNA. This mutation (a base substitution in the splicing sequence) eliminates a 3’ splice site resulting in the inclusion of the second intron (I2) in the final mRNA. We are going to pretend that this intron is short having only 15 nucleotides (most introns are much longer so this is just to make things simple) with the following sequence shown below in bold. The ( ) indicate the reading frames in the exons; the included intron 2 sequences are in bold. A. Would you expected this change to be harmful? ExplainB. If you were to do gene therapy to fix this problem, briefly explain what type of gene therapy youwould use to correct this. Please help. Thank youarrow_forwardMolecular Biology Question Please help. Thank you Explain what is meant by the term “defective virus.” Explain how a defective virus is able to replicate.arrow_forwardMolecular Biology Explain why changing the codon GGG to GGA should not be harmful. Please help . Thank youarrow_forward
- Stage Percent Time in Hours Interphase .60 14.4 Prophase .20 4.8 Metaphase .10 2.4 Anaphase .06 1.44 Telophase .03 .72 Cytukinesis .01 .24 Can you summarize the results in the chart and explain which phases are faster and why the slower ones are slow?arrow_forwardCan you circle a cell in the different stages of mitosis? 1.prophase 2.metaphase 3.anaphase 4.telophase 5.cytokinesisarrow_forwardWhich microbe does not live part of its lifecycle outside humans? A. Toxoplasma gondii B. Cytomegalovirus C. Francisella tularensis D. Plasmodium falciparum explain your answer thoroughly.arrow_forward
- Select all of the following that the ablation (knockout) or ectopoic expression (gain of function) of Hox can contribute to. Another set of wings in the fruit fly, duplication of fingernails, ectopic ears in mice, excess feathers in duck/quail chimeras, and homeosis of segment 2 to jaw in Hox2a mutantsarrow_forwardSelect all of the following that changes in the MC1R gene can lead to: Changes in spots/stripes in lizards, changes in coat coloration in mice, ectopic ear formation in Siberian hamsters, and red hair in humansarrow_forwardPleiotropic genes are genes that (blank) Cause a swapping of organs/structures, are the result of duplicated sets of chromosomes, never produce protein products, and have more than one purpose/functionarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning





