EBK PHYSICS
5th Edition
ISBN: 9780134051796
Author: Walker
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 8CQ
Assume that the brakes in your car create a constant deceleration, regardless of how fast you are going. If you double your driving speed, how does this affect (a) the time required to come to a stop, and (b) the distance needed to stop?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are standing at rest at a bus stop. A bus moving at a constant speed of 5.00 m>s passes you. When the rear of the bus is 12.0 m past you, you realize that it is your bus, so you start to run toward it with a constant acceleration of 0.960 m>s 2 .
How far would you have to run before you catch up with the rear of the bus, and
how fast must you be running then?
Would an average college student be physically able to accomplish this?
Assume that the brakes in your car create a constant deceleration,regardless of how fast you are going. If you double your drivingspeed, how does this affect (a) the time required to come to a stop,and (b) the distance needed to stop?
Assume that the brakes in your car create aconstant deceleration of 4.2 m>s2 regardless of how fast you aredriving. If you double your driving speed from 18 m>s to 36 m>s,(a) does the time required to come to a stop increase by a factor oftwo or a factor of four? Explain. Verify your answer to part (a) bycalculating the stopping times for initial speeds of (b) 18 m>s and(c) 36 m>s.
Chapter 2 Solutions
EBK PHYSICS
Ch. 2.1 - For each of the following questions, give an...Ch. 2.2 - The position of an object as a function of time is...Ch. 2.3 - Figure 2-10 shows the position-versus-time graph...Ch. 2.4 - At a certain time, object 1 has an initial...Ch. 2.5 - The equation of motion for an object moving with...Ch. 2.6 - A submerged alligator swims directly toward two...Ch. 2.7 - On a distant, airless planet, an astronaut drops a...Ch. 2 - You take your dog on a walk to a nearby park. On...Ch. 2 - Does an odometer in a car measure distance or...Ch. 2 - An astronaut orbits Earth in the space shuttle. In...
Ch. 2 - After a tennis match the players dash to the net...Ch. 2 - Does a speedometer measure speed or velocity?...Ch. 2 - Is it possible for a car to circle a racetrack...Ch. 2 - For what kinds of motion are the instantaneous and...Ch. 2 - Assume that the brakes in your car create a...Ch. 2 - The velocity of an object is zero at a given...Ch. 2 - If the velocity of an object is nonzero, can its...Ch. 2 - Is it possible for an object to have zero average...Ch. 2 - A batter hits a pop fly straight up. (a) Is the...Ch. 2 - A person on a trampoline bounces straight upward...Ch. 2 - A volcano shoots a lava bomb straight upward. Does...Ch. 2 - Referring to Figure 2-27, you walk from your home...Ch. 2 - In Figure 2-27, you walk from the park to your...Ch. 2 - The two tennis players shown in Figure 2-28 walk...Ch. 2 - The golfer in Figure 2-29 sinks the ball in two...Ch. 2 - A jogger runs on the track shown in Figure 2-30....Ch. 2 - Predict/Calculate A child rides a pony on a...Ch. 2 - Predict/Explain You drive your car in a straight...Ch. 2 - Predict/Explain You drive your car in a straight...Ch. 2 - Usain Bolt of Jamaica set a world record in 2009...Ch. 2 - BIO Kangaroos have been clocked at speeds of 65...Ch. 2 - Rubber Ducks A severe storm on January 10, 1992,...Ch. 2 - Radio waves travel at the speed of light,...Ch. 2 - It was a dark and stormy night, when suddenly you...Ch. 2 - BIO Nerve Impulses The human nervous system can...Ch. 2 - A finch rides on the back of a Galapagos tortoise,...Ch. 2 - You jog at 9.1 km/h for 5.0 km, then you jump into...Ch. 2 - A dog runs back and forth between its two owners,...Ch. 2 - BIO Predict/Calculate Blood flows through a major...Ch. 2 - BIO Predict/Calculate Blood flows through a major...Ch. 2 - In heavy rush-hour traffic you drive in a straight...Ch. 2 - Predict/Calculate An expectant father paces back...Ch. 2 - The position of a particle as a function of time...Ch. 2 - The position of a particle as a function of time...Ch. 2 - Predict/Calculate A tennis player moves back and...Ch. 2 - On your wedding day you leave for the church 30.0...Ch. 2 - The position-versus-time plot of a boat...Ch. 2 - The position of a particle as a function of time...Ch. 2 - The position of a particle as a function of time...Ch. 2 - Predict/Explain On two occasions you accelerate...Ch. 2 - A 747 airliner reaches its takeoff speed of156...Ch. 2 - At the starting gun, a runner accelerates at1.9...Ch. 2 - A jet makes a landing traveling due east with a...Ch. 2 - A car is traveling due north at 23.6 m/s. Find the...Ch. 2 - A motorcycle moves according to the...Ch. 2 - A person on horseback moves according to the...Ch. 2 - Running with an initial velocity of +9.2 m/s, a...Ch. 2 - Predict/Calculate Assume that the brakes in your...Ch. 2 - As a train accelerates away from a station, it...Ch. 2 - A particle has an acceleration of +6.24 m/s2 for...Ch. 2 - Landing with a speed of 71.4 m/s, and traveling...Ch. 2 - When you see a traffic light turn red, you apply...Ch. 2 - A ball is released at the point x = 2 m on an...Ch. 2 - Starting from rest, a boat increases its speed to...Ch. 2 - The position of a car as a function of time is...Ch. 2 - The position of a ball as a function of time is...Ch. 2 - BIO A cheetah can accelerate from rest to 25 0 m/s...Ch. 2 - A sled slides from rest down an icy slope....Ch. 2 - A child slides down a hill on a toboggan with an...Ch. 2 - The Detonator On a ride called the Detonator at...Ch. 2 - Jules Verne In his novel From the Earth to the...Ch. 2 - BIO Bacterial Motion Approximately 0.1% of the...Ch. 2 - Two cars drive on a straight highway. At time t =...Ch. 2 - A Meteorite Strikes On October 9, 1992, a 27-pound...Ch. 2 - A rocket blasts off and moves straight upward from...Ch. 2 - Predict/Calculate You are driving through town at...Ch. 2 - Predict/Calculate You are driving through town at...Ch. 2 - BIO Predict/Calculate A Tongues Acceleration When...Ch. 2 - BIO Surviving a Large Deceleration On July 13,...Ch. 2 - A boat is cruising in a straight line at a...Ch. 2 - A model rocket rises with constant acceleration to...Ch. 2 - The infamous chicken is dashing toward home plate...Ch. 2 - A bicyclist is finishing his repair of a flat tire...Ch. 2 - A car in stop-and-go traffic starts at rest, moves...Ch. 2 - A car and a truck are heading directly toward one...Ch. 2 - Suppose you use videos to analyze the motion of...Ch. 2 - At the edge of a roof you throw ball 1 upward with...Ch. 2 - A cliff diver drops from rest to the water below....Ch. 2 - For a flourish at the end of her act, a juggler...Ch. 2 - Soaring Shaun During the 2014 Olympic games,...Ch. 2 - BIO Gulls are often observed dropping clams and...Ch. 2 - A volcano launches a lava bomb straight upward...Ch. 2 - An Extraterrestrial Volcano The first active...Ch. 2 - BIO Measure Your Reaction Time Heres something you...Ch. 2 - Predict/Explain A carpenter on the roof of a...Ch. 2 - Predict/Explain Figure 2-40 shows a v-versus-t...Ch. 2 - A ball is thrown straight upward with an initial...Ch. 2 - On a hot summer day in the state of Washington...Ch. 2 - Highest Water Fountain The USAs highest fountain...Ch. 2 - Wrongly called for a foul, an angry basketball...Ch. 2 - To celebrate a victory, a pitcher throws her glove...Ch. 2 - Predict/Calculate Standing at the edge of a cliff...Ch. 2 - You shoot an arrow into the air. Two seconds later...Ch. 2 - While riding on an elevator descending with a...Ch. 2 - A hot-air balloon is descending at a rate of 2.3...Ch. 2 - A model rocket blasts off and moves upward with an...Ch. 2 - BIO The southern flying squirrel (Glaucomys...Ch. 2 - Hitting the High Striker A young woman at a...Ch. 2 - While sitting on a tree branch 10.0 m above the...Ch. 2 - An astronaut on the Moon drops a rock straight...Ch. 2 - Taipei 101 An elevator in the Taipei 101...Ch. 2 - A Supersonic Waterfall Geologists have learned of...Ch. 2 - A juggler throws a ball straight up into the air....Ch. 2 - CE At the edge of a roof you drop ball A from...Ch. 2 - CE Two balls start their motion at the same time,...Ch. 2 - CE Refer to the position-versus-time plot in...Ch. 2 - Drop Tower NASA operates a 2.2-second drop tower...Ch. 2 - The velocity-versus-time graph for an object...Ch. 2 - At the 13th green of the U.S. Open you need to...Ch. 2 - A glaucous-winged gull, ascending straight upward...Ch. 2 - A doctor, preparing to give a patient an...Ch. 2 - A hot-air balloon has just lifted off and is...Ch. 2 - Astronauts on a distant planet throw a rock...Ch. 2 - BIO A Jet-Propelled Squid Squids can move through...Ch. 2 - A ball, dropped from rest, covers three-quarters...Ch. 2 - You drop a ski glove from a height h onto fresh...Ch. 2 - To find the height of an overhead power line, you...Ch. 2 - Sitting in a second-story apartment, a physicist...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Referring to Example 2-17 Suppose the speeder (red...Ch. 2 - Referring to Example 2-17 The speeder passes the...Ch. 2 - Predict/Calculate Referring to Example 2-21 (a) In...Ch. 2 - Referring to Example 2-21 Suppose the balloon is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
21. Two -diameter aluminum electrodes are spaced apart.
The electrodes are connected to a battery.
...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Dr. Ara B. Dopsis and Dr. C. Ellie Gans are performing genetic crosses on daisy plants. They self-fertilize a b...
Genetic Analysis: An Integrated Approach (3rd Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume that the brakes in your car create a constant deceleration of 3.3 m/s? regardlesss of how fast you are driving. Suppose you double your driving speed from 22 m/s to 44 m/s. (a) Does the distance needed to stop increase by a factor of two or a factor of four? four (b) Calculate the stopping distance for the initial speed of 22 m/s. m (c) Calculate the stopping distance for the initial speed of 44 m/s. m Use part (b) and (c) to verify your answer for part (a).arrow_forward(a) What is the magnitude of the average acceleration of a skier who, starting from rest, reaches a speed of 8.06 m/s when going down a slope for 1.61 s? (b) How far does the skier travel in this time?arrow_forwardIT IS POSSIBLE FOR THE SPEED OF AN OBJECT TO BE ZERO AT THE SAME TIME THAT ITS ACCELERATION IS NOT ZERO. GIVE AN EXAMPLE OF SUCH SITUATION.arrow_forward
- On a dry road, a car with good tires may be able to brake with a constant deceleration of 4.92 m/s2. (a) How long does such a car, initially traveling at 24.6 m/s, take to stop? (b) How far does it travel in this time? (c) Graph x versus t and v versus t for the deceleration.arrow_forwardA dog and her handler are at rest, and are facing each other at a distance of 40.0 m. On command, they run towards each other: the handler runs at a constant speed vp = 2.5 m/s, while the dog first runs with constant acceleration ad = 2.0 m/s 2 until she reaches her maximum speed of vd = 4.5 m/s. a) Calculate the time it takes the dog to reach her maximum speed. Choose t = 0 when the handler and dog start to run. b) Find the positions of the handler and dog at the instant the dog reaches her maximum speed. Choose the coordinate, such as that the handler is at the origin x = 0 at time t = 0. %3D %3D %3D Notes Commentsarrow_forwardA car comes to a complete stop from an initial speed of 50 mi/hr in a distance of 100 ft. With the same constant acceleration, what would be the stopping distance s from the initial speed of 70 mi/hrarrow_forward
- The driver of a car traveling at 110km/h slams on the brakes so that the car undergoes a constant acceleration, skidding to a complete stop at 4.5s . What is the average acceleration of the car during braking?arrow_forwardASAP I can’t answer thisarrow_forwardA typical sneeze expels material at a maximum speed of 55.4 m/s. Suppose the material begins inside the nose at rest, 2.00 cm from the nostrils. It has a constant acceleration for the first 0.250 cm and then moves at constant velocity for the remainder of the distance. A) What is the acceleration as the material moves the first 0.250 cm? B) How long does it take to move the 2.00-cm distance in the nose? C) Which of the following is the correct graph of vx(t) if the sneeze expels material at a maximum speed of 44.0 m/s and has a constant acceleration for the first 0.250 cm and then moves at constant velocity for the remainder of the distance?arrow_forward
- The car is traveling at a speed of 76 mi/hr as it approaches point A. Beginning at A, the car decelerates at a constant 7.8 ft/sec? until i gets to point B, after which its constant rate of decrease of speed is 2.6 ft/sec? as it rounds the interchange ramp. Determine the magnitude of the total car acceleration (a) just before it gets to B, (b) just after it passes B, and (c) at point C. 219' C В 375'arrow_forward(10%) Problem 9: In 1967, the New Zealander Burt Munro set the world speed record for an Indian motorcycle, on the Bonneville Salt Flats in Utah, reaching 183.58 mi/h. The one-way course was 5.00 mi long. Acceleration rates are often described by the time it takes to reach 60.0 mi/h from rest. > * Assuming that time was 4.1 s for Burt, if he accelerated at a constant rate until he reached his maximum speed, and then continued at that speed until the end of the course, how long, in seconds, did it take him to complete the course? Grade Summary Deductions 0%arrow_forwardPerson A jogs east at a speed of 5 meters per second for 3 minutes, then turns north and jogs at 4 meters per second for 5 minutes. (1) what is the jogging speed of person A for the whole duration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY