Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 70P
Calculate and plot the maximum capillary rise of water (20°C) to be expected in a vertical glass tube as a function of tube diameter for diameters from 0.5 to 2.5 mm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the magnitude of capillary effect in millimeters in a glass tube of 7 mm diameter when immersed in mercury. The temperature of the liquid is 25oC and the and the values of surface tension of mercury at 25oC is 0.51 N/m. The angle of contact for mercury is 130o
The surface tesnion of waterr in contact with air at 20deg C is given at 0.0716 N/m. The pressure inside a droplet of water is to be 0.0147 N/cm^2 greater than the outside pressure, calculate the diameter in mm of the droplet of water.
Solve it clearly please
Chapter 2 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - A viscous liquid is sheared between two parallel...Ch. 2 - For the velocity field V=Ax2yi+Bxy2j, where A = 2...Ch. 2 - A fluid flow has the following velocity...Ch. 2 - When an incompressible, nonviscous fluid flows...Ch. 2 - For the free vortex flow the velocities are t =...Ch. 2 - For the forced vortex flow the velocities are t =...Ch. 2 - A velocity field is specified as V=axyi+by2j,...Ch. 2 - A velocity field is given by V=ax3i+bxy3j, where a...
Ch. 2 - The velocity for a steady, incompressible flow in...Ch. 2 - The flow field for an atmospheric flow is given by...Ch. 2 - For the velocity field V=AxiAyj,, where A = 2s 1....Ch. 2 - A velocity field in polar coordinates is given...Ch. 2 - The flow of air near the Earths surface is...Ch. 2 - A velocity field is given by V=aytibxj, where a =...Ch. 2 - Air flows downward toward an infinitely wide...Ch. 2 - Consider the flow described by the velocity field...Ch. 2 - Consider the velocity field V = axi + by(1 + ct)...Ch. 2 - Consider the flow field given in Eulerian...Ch. 2 - A velocity field is given by V=axti+byj, where A =...Ch. 2 - Consider the garden hose of Fig. 2.5. Suppose the...Ch. 2 - Consider the velocity field of Problem 2.18. Plot...Ch. 2 - Streaklines are traced out by neutrally buoyant...Ch. 2 - Consider the flow field V=axti+bj, where a = 1/s2...Ch. 2 - A flow is described by velocity field V=ay2i+bj,...Ch. 2 - Tiny hydrogen bubbles are being used as tracers to...Ch. 2 - A flow is described by velocity field V=ai+bxj,...Ch. 2 - A flow is described by velocity field V=ayi+btj,...Ch. 2 - A flow is described by velocity field V=ati+bj,...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - Some experimental data for the viscosity of helium...Ch. 2 - The velocity distribution for laminar flow between...Ch. 2 - What is the ratio between the viscosities of air...Ch. 2 - Calculate velocity gradients and shear stress for...Ch. 2 - A very large thin plate is centered in a gap of...Ch. 2 - A female freestyle ice skater, weighing 100 lbf,...Ch. 2 - A block of mass 10 kg and measuring 250 mm on each...Ch. 2 - A 73-mm-diameter aluminum (SG = 2.64) piston of...Ch. 2 - A vertical gap 25 mm wide of infinite extent...Ch. 2 - A cylinder 8 in. in diameter and 3 ft long is...Ch. 2 - Crude oil at 20C fills the space between two...Ch. 2 - The piston in Problem 2.40 is traveling at...Ch. 2 - A block of mass M slides on a thin film of oil....Ch. 2 - A block 0.1 m square, with 5 kg mass, slides down...Ch. 2 - A torque of 4 N m is required to rotate the...Ch. 2 - A circular disk of diameter d is slowly rotated in...Ch. 2 - The fluid drive shown transmits a torque T for...Ch. 2 - A block that is a mm square slides across a flat...Ch. 2 - In a food-processing plant, honey is pumped...Ch. 2 - SAE 10W-30 oil at 100C is pumped through a tube L...Ch. 2 - The lubricant has a kinematic viscosity of 2:8105...Ch. 2 - Calculate the approximate viscosity of the oil....Ch. 2 - Calculate the approximate power lost in friction...Ch. 2 - Fluids of viscosities 1 = 0.1 Ns/m2 and 2 = 0.15...Ch. 2 - A concentric cylinder viscometer may be formed by...Ch. 2 - A concentric cylinder viscometer is driven by a...Ch. 2 - A shaft with outside diameter of 18 mm turns at 20...Ch. 2 - A shock-free coupling for a low-power mechanical...Ch. 2 - A proposal has been made to use a pair of parallel...Ch. 2 - The cone and plate viscometer shown is an...Ch. 2 - A viscometer is used to measure the viscosity of a...Ch. 2 - A concentric-cylinder viscometer is shown. Viscous...Ch. 2 - Design a concentric-cylinder viscometer to measure...Ch. 2 - A cross section of a rotating bearing is shown....Ch. 2 - Small gas bubbles form in soda when a bottle or...Ch. 2 - You intend to gently place several steel needles...Ch. 2 - According to Folsom [6], the capillary rise h...Ch. 2 - Calculate and plot the maximum capillary rise of...Ch. 2 - Calculate the maximum capillary rise of water...Ch. 2 - Calculate the maximum capillary depression of...Ch. 2 - Water usually is assumed to be incompressible when...Ch. 2 - The viscous boundary layer velocity profile shown...Ch. 2 - In a food industry process, carbon tetrachloride...Ch. 2 - What is the Reynolds number of water at 20C...Ch. 2 - A supersonic aircraft travels at 2700 km/hr at an...Ch. 2 - SAE 30 oil at 100C flows through a 12-mm-diameter...Ch. 2 - A seaplane is flying at 100 mph through air at...Ch. 2 - An airliner is cruising at an altitude of 5.5 km...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Pay Per Click Advertising Revenue Many Web sites have advertisements that help to generate revenue by keeping t...
Starting Out With Visual Basic (8th Edition)
What is the value of x after each of the following statements is executed? double x = Math.abs(0.0);
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Why is it important to consider welded products as monolithic structures?
Degarmo's Materials And Processes In Manufacturing
What organization was most responsible for the early success of COBOL (in terms of extent of use)?
Concepts Of Programming Languages
This is a single piece of data within a record. a. field b. variable c. delimiter d. subrecord
Starting Out with Python (4th Edition)
Sentence Filter Write a program that asks the user for two file names. The first file will be opened for input,...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The capillary effect in a glass tube of 3.7 mm diameter, when immersed in (1) water and (2) mercury are 8.2 mm and -3.6 mm respectively. Calculate the value of surface tension in contact with air for water and mercury in N/m. Take, the contact angle for water =00 and mercury =1300.arrow_forwardCalculate the capillary effect in millimetres in a glass tube of 4 mm diameter; when immersed in (i) water and (ii) mercury. The temperature of the liquid is 20°C and the values of surface tension of water and mercury at 20°C in contact with air are 0.0735 N/m and 0.51 N/m respectively. The contact angle for water 0=0° and for mercury 0= 130°. Take specific weight of water at 20°C as equal to 9790 N/m³.arrow_forwardI need the answer soonarrow_forward
- (b). Calculate the capillary effect in mm in a glass tube of 4.4 mm diameter, when immersed in (1) water (2) mercury. The values of surface tension in contact with air are 0.0742 N/m and 0.66 N/m respectively. The contact angle for water =0° and mercury =130°.arrow_forwardCalculate the height of capillary rise in a glass capillary tube having a radius of 3.5 x10-5 m. The surface tension of water is assumed to be 72.7 mN/m. (g = 9.81 m/s²) 10 .a 0.423 m 302 m 423 m 0.21 m b .C .darrow_forwardCalculate the capillary effect in mm in a glass tube of 2mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0725 and 0.56N/m respectively. The angle of contact for water is 0° and 130º for mercury . Take the density of water 1000 kg/m² , specific gravity of mercury is 13.6. (ENTER ONLY THE VALUES BY REFERRING THE UNITS GIVEN) The capillary effect of water in mm is equal to= The capillary effect of mercury in mm is equal to=arrow_forward
- Calculate the capillary effect in milimeters in a glass tube of 4 mm diameter, when immersed in (i) water and (ii) mercury. The temperature of the liquid is 20°? and the value of the surface tension of water and mercury are 0.073575N/m and 0.51N/m respectively.The angle of contact for water is zero and for mercury is 130°C.Take density of water is equal to 998kg/m3arrow_forwarduestion 5 a. Calculate the capillary effect in millimeters in a glass tube of 4mm diameter, when immersed in (i) water (ii) mercury the temperature of the liquid is 20o in contact with air are 0.073575 N/m and 0.51 N/m respectively. The angle of contact for water is zero and that for mercury is 130o. Take density of water at 20o as equal to 998 kg/m3. CYE GREEN PLAITAIN Answeredarrow_forwardCalculate the capillary effect in mm in a glass tube of 4mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0735 and 0.59N/m respectively. The angle of contact for water is 0° and 130° for mercury . Take the density of water 1000 kg/m³ , specific gravity of mercury is 13.6.arrow_forward
- How much time would be required to inject a 1.0-cm-long sample with twice the viscosity of water into a 40-cm-long capillary at 2.0x104 Pa?arrow_forwardHow does the pressure vary at depth (Z) in liquid and gaseous fluids, and explain the reasons why there are differences.arrow_forwardShow all working explaining detailly each steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license