Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 41P
A vertical gap 25 mm wide of infinite extent contains oil of specific gravity 0.95 and viscosity 2.4 Pa·s. A metal plate 1.5 m × 1.5 m × 1.6 mm weighing 45 N is to be lifted through the gap at a constant speed of 0.06 m·s. Estimate the force required.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The belt moves at a steady velocity V and skims the top of oil tank. Assuming a linear velocity profile in the
oil, what is the required belt-drive power P (watt) (P= power = force x Velocity) if the belt moves at 3.5 m/s
over oil with specific gravity of S=1.7 and oil viscosity of 0.004 m2/s. Belt geometry L=2 m, b = 60 cm, and oil
depth is h = 3 cm?
L.
Ot
Moving belt, width b
Oil, depth h
No card B a m OO ji
OON 2819:03
Image viewer
L
Moving belt, width b
Oil, depth h
2.
A 25-mm diameter shaft with density 7,870 kg/m³ is pulled through a cylindrical bore as
shown. Oil with a kinematic viscosity of 8.2 104 m²/s and SG-0.89 fills the 0.3-mm
gap between the shaft and the bore. Find the magnitude of the force P required to pull the
rod through the bore with a constant speed of 2.5 m/s.
0.5 m
15°
Chapter 2 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - For the velocity fields given below, determine:...Ch. 2 - A viscous liquid is sheared between two parallel...Ch. 2 - For the velocity field V=Ax2yi+Bxy2j, where A = 2...Ch. 2 - A fluid flow has the following velocity...Ch. 2 - When an incompressible, nonviscous fluid flows...Ch. 2 - For the free vortex flow the velocities are t =...Ch. 2 - For the forced vortex flow the velocities are t =...Ch. 2 - A velocity field is specified as V=axyi+by2j,...Ch. 2 - A velocity field is given by V=ax3i+bxy3j, where a...
Ch. 2 - The velocity for a steady, incompressible flow in...Ch. 2 - The flow field for an atmospheric flow is given by...Ch. 2 - For the velocity field V=AxiAyj,, where A = 2s 1....Ch. 2 - A velocity field in polar coordinates is given...Ch. 2 - The flow of air near the Earths surface is...Ch. 2 - A velocity field is given by V=aytibxj, where a =...Ch. 2 - Air flows downward toward an infinitely wide...Ch. 2 - Consider the flow described by the velocity field...Ch. 2 - Consider the velocity field V = axi + by(1 + ct)...Ch. 2 - Consider the flow field given in Eulerian...Ch. 2 - A velocity field is given by V=axti+byj, where A =...Ch. 2 - Consider the garden hose of Fig. 2.5. Suppose the...Ch. 2 - Consider the velocity field of Problem 2.18. Plot...Ch. 2 - Streaklines are traced out by neutrally buoyant...Ch. 2 - Consider the flow field V=axti+bj, where a = 1/s2...Ch. 2 - A flow is described by velocity field V=ay2i+bj,...Ch. 2 - Tiny hydrogen bubbles are being used as tracers to...Ch. 2 - A flow is described by velocity field V=ai+bxj,...Ch. 2 - A flow is described by velocity field V=ayi+btj,...Ch. 2 - A flow is described by velocity field V=ati+bj,...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - The variation with temperature of the viscosity of...Ch. 2 - Some experimental data for the viscosity of helium...Ch. 2 - The velocity distribution for laminar flow between...Ch. 2 - What is the ratio between the viscosities of air...Ch. 2 - Calculate velocity gradients and shear stress for...Ch. 2 - A very large thin plate is centered in a gap of...Ch. 2 - A female freestyle ice skater, weighing 100 lbf,...Ch. 2 - A block of mass 10 kg and measuring 250 mm on each...Ch. 2 - A 73-mm-diameter aluminum (SG = 2.64) piston of...Ch. 2 - A vertical gap 25 mm wide of infinite extent...Ch. 2 - A cylinder 8 in. in diameter and 3 ft long is...Ch. 2 - Crude oil at 20C fills the space between two...Ch. 2 - The piston in Problem 2.40 is traveling at...Ch. 2 - A block of mass M slides on a thin film of oil....Ch. 2 - A block 0.1 m square, with 5 kg mass, slides down...Ch. 2 - A torque of 4 N m is required to rotate the...Ch. 2 - A circular disk of diameter d is slowly rotated in...Ch. 2 - The fluid drive shown transmits a torque T for...Ch. 2 - A block that is a mm square slides across a flat...Ch. 2 - In a food-processing plant, honey is pumped...Ch. 2 - SAE 10W-30 oil at 100C is pumped through a tube L...Ch. 2 - The lubricant has a kinematic viscosity of 2:8105...Ch. 2 - Calculate the approximate viscosity of the oil....Ch. 2 - Calculate the approximate power lost in friction...Ch. 2 - Fluids of viscosities 1 = 0.1 Ns/m2 and 2 = 0.15...Ch. 2 - A concentric cylinder viscometer may be formed by...Ch. 2 - A concentric cylinder viscometer is driven by a...Ch. 2 - A shaft with outside diameter of 18 mm turns at 20...Ch. 2 - A shock-free coupling for a low-power mechanical...Ch. 2 - A proposal has been made to use a pair of parallel...Ch. 2 - The cone and plate viscometer shown is an...Ch. 2 - A viscometer is used to measure the viscosity of a...Ch. 2 - A concentric-cylinder viscometer is shown. Viscous...Ch. 2 - Design a concentric-cylinder viscometer to measure...Ch. 2 - A cross section of a rotating bearing is shown....Ch. 2 - Small gas bubbles form in soda when a bottle or...Ch. 2 - You intend to gently place several steel needles...Ch. 2 - According to Folsom [6], the capillary rise h...Ch. 2 - Calculate and plot the maximum capillary rise of...Ch. 2 - Calculate the maximum capillary rise of water...Ch. 2 - Calculate the maximum capillary depression of...Ch. 2 - Water usually is assumed to be incompressible when...Ch. 2 - The viscous boundary layer velocity profile shown...Ch. 2 - In a food industry process, carbon tetrachloride...Ch. 2 - What is the Reynolds number of water at 20C...Ch. 2 - A supersonic aircraft travels at 2700 km/hr at an...Ch. 2 - SAE 30 oil at 100C flows through a 12-mm-diameter...Ch. 2 - A seaplane is flying at 100 mph through air at...Ch. 2 - An airliner is cruising at an altitude of 5.5 km...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
7.13* For a bearing
DE = NUS 5 53’56 ”WT and angles to the right, compute the bearing of PG if angle
DEF 2 88°...
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Before GUIs became popular, the _____ interface was the most commonly used. a. command line b. remote terminal ...
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
A file that contains a Flash animation uses the __________ file extension. a. .class b. .swf c. .mp3 d. .flash
Web Development and Design Foundations with HTML5 (8th Edition)
Indicate whether data administration or database administration is typically responsible for each of the follow...
Modern Database Management
Can a package have any name you might want, or are there restrictions on what you can use for a package name? E...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two large surfaces with a gap of 34 mm width were filled with oil having a kinematic viscosity of 0.06 cS and a density of 2 kg/m3.Find the force which is required to drag a thin plate with size 0.15 m of length and 2 m of width between the surfaces at a speed, v = 0.322 m/s if this plate is equally spaced, t between the two surfaces?arrow_forwardThe belt moves at a steady velocity V and skims the top of oil tank. Assuming a linear velocity profile in the oil, what is the required belt-drive power P (watt) (P= power force x Velocity) if the belt moves at 3.5 m/s over oil with specific gravity of S-2.4 and oil viscosity of 0.004 m2/s. Belt geometry L= 2 m, b = 60 cm, and oil depth is h = 3 cm? Moving belt, width b Oil, depth harrow_forwardAn incompressible fluid (kinematic viscosity =7.4x10-7 m2/s, specific gravity=0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates,find the shear stress in Pascal on the surface of top plate.arrow_forward
- an oil drum of 500 mm diameter and 1.5 long is to be rolled across a footstep of 100 mm high.find the minimum push required at the top of the drum.take density of the oil as 1kg/litre.neglect weight of the drum.arrow_forwardA hydraulic lift of the type commonly used for greasing automobile consists of a 280.18-mm- diameter cylinder, the annular space being filled with oil having a kinematic viscosity of 0.00042 m'/s and specific gravity of 0.86. If the rate of travel of the ram is 0.22 m/s, find the frictional resistance when 2 m of the ram is engaged in the cylinder. -Ram, 10.000 in dia - Oif film, 0.003 in thick - Fixed cylinderarrow_forwardA shaft (250 mm diameter) rotates at 250 rpm inside a sleeve (251 mm diameter) with a constant clearance. If the power required to rotate the shaft is 2204 W, find the viscosity of lubricant oil in the clearance. Take length of sleeve as 150 mm. Assume a linear velocity profile in the fluid film.arrow_forward
- Spaces h1=15 mm and h2=20 mm wide between upper and lower stationary plates and a very thin moving plate is filled with crude oil (oil =7.18x10-3 Pas) and water (water =1.00x10-3 Pas), respectively. What force is required to drag the plate of 0.5 m2 area between the surfaces at a speed of v=0.15 m/s. Assume linear velocity profilearrow_forwardThe power provided by a centrifugal pumo is given by P=mgh where P = power/watts m = mass flow rate, kg/s g= gravitational acceleration, m/s² h = pump head,m prove that this equation is dimensionally homogeneousarrow_forwardA 3d block with the dimensions of 50cm by 30cm by 20cm and a weight of 450 N, is going to be moved at a constant velocity of 0.8 m/s on an incline. The incline has a friction coefficient of 0.27. If a 0.45 mm thick oil film with a dynamic velocity of 0.012 Pa∙s is applied between the block and the inclined surface, what is the percent reduction in the required force?arrow_forward
- Calculate the difference in pressure across an air bubble of diameter 0.001 m immersed in water? Surface tension = 0.072 N/m.arrow_forwardA vertical venturimeter carries liquid of relative density 0.8 and has inle. and throat diameters of 150 mm and 75 mm respectively. The pressure connection at the throat is 150 mm above that at the inlet. If the actual rate of flow is 40 litres/sec and the C 0.96, calculate the pressure difference between inlet and throat N/m?.arrow_forwardPlease Solve it in type ( not handwriting )arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License