Concept explainers
Consider the velocity field of Problem 2.18. Plot the streakline formed by particles that passed through the point (1, 1) during the interval from t = 0 to t = 3 s. Compare with the streamlines plotted through the same point at the instants t = 0, 1, and 2 s.
2.18 Consider the flow described by the velocity field
Trending nowThis is a popular solution!
Chapter 2 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
- 2. Consider a stream function given by = (²+x²). (a) Does this flow satisfy conservation of mass? Show your work. (b) Plot the streamlines for this flow. Let K= 2. Be sure to indicate the direction of the flow. (c) Is this flow irrotational? If so, find the velocity potential for this flow. If not, show that a velocity potential does not exist. (d) Describe the flow represented by this stream function.arrow_forwardAnswer question 3 in the attached image pleasearrow_forwardA flow is described by velocity V=ay i+bt j ,a=1s-¹ and b =.5m/s².at t=25s,what are the coordinates of the particle that passed through point (1,2) at t=24s?at t=26s, what are the coordinates of the particle that passed through point (1,2)?plot the pathline and streamline through point (1,2) and compare with streamlines through the same point at the instants t=24s,t=25s and t=26s.arrow_forward
- Flow through a converging nozzle can be approximated by a one-dimensional velocity distribution u=vo (1+2). For the nozzle shown below, assume that the velocity varies linearly from u = vo at the entrance to u = 3v, at the exit. Compute the acceleration at the entrance and exit if vo=10m/s and L = 1m. x=0 X u= :326 x=Larrow_forwarda. Derive an equation for the material acceleration vector.b. Obtain the vorticity vector for the velocity field.c. Is the flow rotational or irrotational? Show through your derivation.d. Is the flow incompressible or compressible? Show through your derivation.arrow_forward1. Stagnation Points A steady incompressible three dimensional velocity field is given by: V = (2 – 3x + x²) î + (y² – 8y + 5)j + (5z² + 20z + 32)k Where the x-, y- and z- coordinates are in [m] and the magnitude of velocity is in [m/s]. a) Determine coordinates of possible stagnation points in the flow. b) Specify a region in the velocity flied containing at least one stagnation point. c) Find the magnitude and direction of the local velocity field at 4- different points that located at equal- distance from your specified stagnation point.arrow_forward
- Velocity field of an incompressible flow is given by V = 6xi − 6yj (m/s) a) Find the pathlines in x-y plane. Make a sketch of pathlines for x ≥ 0 and y ≥ 0. b) Find the streamlines. Make a sketch of streamlines for x ≥ 0 and y ≥ 0. c) At time t = 0 s, the position of a rectangular fluid element ABCD is described by the corner points A(1,3), B(2,3), C(1,2) and D(2,2). Determine the new position of the fluid element at time t = 1/6 sarrow_forward1. For a flow in the xy-plane, the y-component of velocity is given by v = y2 −2x+ 2y. Find a possible x-component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? 2. The x-component of velocity in a steady, incompressible flow field in the xy-plane is u = A/x. Find the simplest y-component of velocity for this flow field.arrow_forward2. Consider the Eulerian velocity field u(x, t) = y i + (x – sin t) j, where x = x i + yj and t is the time. Please explain how to find an expression for the streamlines that pass through the point (0, yo) for yo ER. Then, find the nonparametric expression for the pathline of the particle that passes through the point (0, 1/2 ) at t = 0, describing the motion.arrow_forward
- problem 2 please.arrow_forwardPlease find the question attached. I don’t understand how to integrate when finding the pathline.arrow_forwardQ: A flow field is given by: V = (x'y)i+(y°z)j–-(2x*yz+ yz*)k Prove that it is a case of possible steady incompressible fluid flow. Calculate the velocity and acceleration at the point (3,2.4).arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY