Concept explainers
Scientific Practices Footprints in the Air
Hiking boot treads, asphalt pavement, corn fields—each of these is an example of a “ground print” left by humans because each one alters the lay of the land. Similarly, our activities leave “air prints” that alter the composition of our atmosphere.
Identify three indoor and three outdoor sources that emit chemicals into the air around you. For each of these sources, describe whether they (1) hurt the air quality, (2) improve the air quality, or (3) have some effect, but you don’t know what it is.
Interpretation:
The three indoor and outdoor sources that emit chemicals into the air have to be identified and to be described how they affect the quality of air.
Concept Introduction:
Quality of air refers to a condition in which air in the surrounding. Good air quality refers to the condition of air with less pollution, clear air and free from smog.
Explanation of Solution
Quality of air refers to a condition in which air in the surrounding. Good air quality refers to the condition of air with less pollution, clear air and free from smog.
The three indoor sources include,
- • Emission of gases from chimney- they have effect on air quality.
- • CFC’s emitted from air condition and refrigerator-hurt the air quality.
- • Burning of wood- hurt the air quality.
The three outdoor sources include,
- • Burning of wood, vegetation, fuels etc- hurt the air quality.
- • Vehicles with poor silencer - hurt the air quality.
- • Emission of gases from the industries- hurt the air quality.
Want to see more full solutions like this?
Chapter 2 Solutions
Chemistry In Context
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Biology: Concepts and Investigations
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Organic Chemistry (8th Edition)
- If the rotational constant of a molecule is B = 120 cm-1, it can be stated that the transition from 2←1:a) gives rise to a line at 120 cm-1b) is a forbidden transitionc) gives rise to a line at 240 cm-1d) gives rise to a line at 480 cm-1arrow_forwardBriefly indicate the coordination forms of B and Si in borates and silicates, respectively.arrow_forwardCan you please draw out the Lewis structure for these two formulasarrow_forward
- In a rotational Raman spectrum of a diatomic molecule it is correct to say that:a) anti-Stokes lines occur at frequencies higher than the excitatory oneb) Stokes lines occur at frequencies higher than the excitatory onec) Rayleigh scattering is not observedd) Rayleigh scattering corresponds to delta J = 0arrow_forwardOf the molecules: H2, N2, HCl, CO2, indicate which ones can give Raman vibration-rotation spectra:a) H2, N2 and HClb) H2, N2, HCl and CO2c) H2 and N2d) all of themarrow_forwardCan you please help me with drawing the Lewis structure of each molecular formula?I truly appreciate you!arrow_forward
- Can you please help me with drawing the Lewis structure of each molecular formula?I truly appreciate you!arrow_forwardCan you please help me with drawing the Lewis structure of each molecular formula?I truly appreciate you!arrow_forwardCan you please help me with drawing the Lewis structure of each molecular formula?I truly appreciate you!arrow_forward
- Please draw and explainarrow_forwardDescribe each highlighted bond in terms of the overlap of atomic orbitals. (a) Н Н H H [References] HIC H H C H H-C-CC-N: H σ character n character (b) HIC H H H H-C-C-C HIC H Н H O-H σ character n character Submit Answer Try Another Version 3 item attempts remainingarrow_forward11 Naming and drawing alcohols Write the systematic (IUPAC) name for each of the following organic molecules: structure OH HO OH Explanation Check name ☐arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning