
Concept explainers
Answer Problems 1–12 without referring back to the text. Fill in the blanks or answer true or false.
1. The linear DE, y′ − ky = A, where k and A are constants, is autonomous. The critical point __________ of the equation is a(n) __________ (attractor or repeller) for k > 0 and a(n) __________ (attractor or repeller) for k < 0.

To fill: The blanks with appropriate answer.
Answer to Problem 1RE
The critical point
Explanation of Solution
Given:
The linear differential equation is
Calculation:
The given linear differential equation is,
Simplify the above linear differential equation,
Equate the first derivative to zero to find the critical point.
Thus, the critical point
Want to see more full solutions like this?
Chapter 2 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
- A survey of 250250 young professionals found that two dash thirdstwo-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.720.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is left bracket nothing comma nothing right bracket0.60820.6082, 0.72510.7251. As 0.720.72 is within the limits of the confidence interval, we cannot conclude that the population proportion is less than 0.720.72. (Use ascending order. Round to four decimal places as needed.)arrow_forwardThe numbered disks shown are placed in a box and one disk is selected at random. Find the probability of selecting a 4, given that a green disk is selected. Find the probability of selecting a 4, given that a green disk is selected. (Type an integer or a simplified fraction.) green blue green green green blue green bluearrow_forwardPls help ASAParrow_forward
- The table shows the distribution, by age, of a random sample of 3160 moviegoers ages 12-74. If one moviegoer is randomly selected from this population, find the probability, expressed as a simplified fraction, that the moviegoer is not in the 65-74 age range. The probability is (Type an integer or a simplified fraction.) Age Distribution of Moviegoers Ages Number 12-24 1090 25-44 860 45-64 890 65-74 320arrow_forwardUse the spinner shown. It is equally probable that the pointer will land on any one of the six regions. If the pointer lands on a borderline, spin again. If the pointer is spun twice, find the probability that it will land on yellow and then yellow. Find the probability that the spinner will land on yellow and then yellow. The probability is (Type an integer or a simplified fraction.) Green Red Gray Red Blue Yellow Q ☑arrow_forwardUse the spinner shown to answer the question. Assume that it is equally probable that the pointer will land on any one of the colored regions. If the pointer lands on a borderline, spin again. If the spinner is spun once, find the probability that the pointer lands in a region that is red or green. The probability that the pointer lands in a region that is red or green is (Type an integer or a simplified fraction.) green red green red yellow redarrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardA survey of 250 young professionals found that two-thirds of them use their cell phones primarily for e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for e-mail is less than 0.72? Use a 95% confidence interval. Question content area bottom Part 1 The 95% confidence interval is [ ], [ ] As 0.72 is ▼ above the upper limit within the limits below the lower limit of the confidence interval, we ▼ can cannot conclude that the population proportion is less than 0.72. (Use ascending order. Round to four decimal places as needed.)arrow_forward2. Answer the following questions using vectors u and v. --0-0-0 = find the the cosine similarity and the angle between u and v. འརྒྱ (a) (b) find the scalar projection of u onto v. (c) find the projection of u onto v. (d) (e) (f) find the scalar projection of onto u. find the projection of u onto u. find the projection of u onto and the projection of onto . (Hint: find the inner product and verify the orthogonality)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage