
Conceptual Physical Science (6th Edition)
6th Edition
ISBN: 9780134060491
Author: Paul G. Hewitt, John A. Suchocki, Leslie A. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 1RCQ
State the law of inertia.
Expert Solution & Answer

To determine
To state the law of inertia.
Answer to Problem 1RCQ
An object will always continue its state of rest or uniform motion unless and until an external unbalanced force act on it.
Explanation of Solution
According to law of inertia, every object continues its state of rest or uniform motion until external unbalanced force acting on the object which causes its state of rest or uniform motion.
This law can be explained as inertia is the virtue of an object to continue its state. The motion of the object is uniform and it implies that there is no acceleration on the object which itself imply that the absence of an external unbalanced force.
Conclusion: An object will always continue its state of rest or uniform motion unless and until an external unbalanced force act on it.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
schedule02:50
Students have asked these similar questions
An EL NIÑO usually results in
Question 8Select one:
a.
less rainfall for Australia.
b.
warmer water in the western Pacific.
c.
all of the above.
d.
none of the above.
e.
more rainfall for South America.
Earth’s mantle is
Question 12Select one:
a.
Solid
b.
Liquid
c.
Metallic
d.
very dense gas
Silicates
Question 18Select one:
a.
All of these
b.
Are minerals
c.
Consist of tetrahedra
d.
Contain silicon and oxygen
Chapter 2 Solutions
Conceptual Physical Science (6th Edition)
Ch. 2 - State the law of inertia.Ch. 2 - Is inertia a property of matter or a force of some...Ch. 2 - What concept was missing from people's minds in...Ch. 2 - When a bird lets go of a branch and drops to the...Ch. 2 - What kind of path would the planets follow if...Ch. 2 - State Newton's second law.Ch. 2 - Is acceleration directly or inversely proportional...Ch. 2 - Is acceleration directly or inversely proportional...Ch. 2 - If the mass of a sliding block is tripled at the...Ch. 2 - What is the net force that acts on a 10-N freely...
Ch. 2 - Why doesnt a heavy object accelerate more than a...Ch. 2 - What is the net force that acts on a 10-N falling...Ch. 2 - What two principal factors affect the force of air...Ch. 2 - What is the acceleration of a falling object that...Ch. 2 - If two objects of the same size fall through air...Ch. 2 - Why does a heavy parachutist fall faster than a...Ch. 2 - Earlier in this chapter, we treated force as a...Ch. 2 - How many forces are required for a single...Ch. 2 - When you push against a wall with your fingers,...Ch. 2 - A boxer can hit a heavy bag with great force. Why...Ch. 2 - State Newtons third law.Ch. 2 - Consider hitting a baseball with a bat. If we call...Ch. 2 - If the force that acts on a cannonball and the...Ch. 2 - Is it correct to say that action and reaction...Ch. 2 - If body A and body B are both within a system, can...Ch. 2 - In terms of forces, what is necessary to...Ch. 2 - Identify the force that propels a rocket into...Ch. 2 - How does a helicopter get its lifting force?Ch. 2 - To what law of physics do we refer when we say you...Ch. 2 - Which of Newtons laws focuses on inertia? Which on...Ch. 2 - In Chapter 1 acceleration is defined as a = vt....Ch. 2 - In this chapter we learn that the cause of...Ch. 2 - Knowing that a 1-kg object weighs 10 N. confirm...Ch. 2 - A simple rearrangement of Newton's second law...Ch. 2 - A Honda Civic hybrid weighs about 2900 pounds,...Ch. 2 - When two horizontal forces are exerted on the car...Ch. 2 - A 12-kg astronaut recedes from her spacecraft by...Ch. 2 - Madison pushes with a 160-N horizontal force on a...Ch. 2 - Sophia pushes with a 40-N horizontal force on a...Ch. 2 - A business jet of mass 30,000 kg takes off when...Ch. 2 - A rocket of mass 100,000 kg undergoes an...Ch. 2 - Calculate the horizontal force that must be...Ch. 2 - Leroy, who has a mass of 100 kg, is skateboarding...Ch. 2 - For 3.0 s, Allison exerts a net force of 10.0 N on...Ch. 2 - The heavyweight boxing champion of the world...Ch. 2 - Suzie Skydiver with her parachute has a mass of 50...Ch. 2 - If you stand next to a wall on a frictionless...Ch. 2 - A force Facts in the forward direction on a cart...Ch. 2 - A firefighter of mass 80 leg slides down a...Ch. 2 - A rock bands tour bus, mass M, is accelerating...Ch. 2 - Boxes of various masses are on a friction-free...Ch. 2 - In cases A, B, and C, the crate is in equilibrium...Ch. 2 - Consider a 100-kg box of tools in the locations A,...Ch. 2 - Three parachutists, A, B, and C, have reached...Ch. 2 - The strong man is pulled in the three situations...Ch. 2 - The Moon travels in a nearly circular path around...Ch. 2 - To pull a wagon across a lawn at constant...Ch. 2 - Your empty hand is not hurt when it bangs lightly...Ch. 2 - Why is a massive cleaver more effective for...Ch. 2 - Aristotle claimed that the speed of a falling...Ch. 2 - What is the net force acting on a 1-kg ball in...Ch. 2 - As you leap upward from the ground, how does the...Ch. 2 - "It's not the fall that hurts you; it's the sudden...Ch. 2 - For each of the following interactions, identify...Ch. 2 - You hold an apple over your head. (a) Identify all...Ch. 2 - What is the net force on an apple that weighs 1 N...Ch. 2 - Why does a cat that falls from the top of a...Ch. 2 - Free fall is motion in which gravity is the only...Ch. 2 - How does the weight of a falling body compare with...Ch. 2 - You tell your friend that the acceleration of a...Ch. 2 - We know that Earth pulls on the Moon. Does it...Ch. 2 - A friend says that Al cannot push on the tree...Ch. 2 - Why can a boxer hit a heavy opponent harder for...Ch. 2 - When you stand on a floor, does the floor exert an...Ch. 2 - Why can you exert greater force on the pedals of a...Ch. 2 - The strong man will push apart the two initially...Ch. 2 - Suppose two carts, one twice as massive as the...Ch. 2 - Two 100-N weights are attached to a spring scale...Ch. 2 - Prob. 83ECh. 2 - When the athlete holds the barbell overhead, the...Ch. 2 - Consider the two forces acting on the person who...Ch. 2 - If a Mack truck and a motorcycle have a head-on...Ch. 2 - Two people of equal mass attempt a tug-of-war with...Ch. 2 - Suppose that one of the people in Exercise 87 has...Ch. 2 - Which team wins in a tug-of-war: the team that...Ch. 2 - The photo shows Steve Hewitt and his daughter...Ch. 2 - When your car moves along the highway at constant...Ch. 2 - The auto in the sketch moves forward as the brakes...Ch. 2 - A racing car travels along a straight raceway at a...Ch. 2 - If it were not for air resistance, would it be...Ch. 2 - When you toss a coin upward, what happens to its...Ch. 2 - Discuss whether or not a stick of dynamite...Ch. 2 - In an orbiting space craft, you are handed two...Ch. 2 - Each of the vertebrae forming your spine is...Ch. 2 - Before the time of Galileo and Newton, many...Ch. 2 - The opening photo in this chapter shows a favorite...Ch. 2 - Consider a ball at rest in the middle of a toy...Ch. 2 - If youre in a car at rest that gets hit from...Ch. 2 - Why do you lurch forward in a bus that suddenly...Ch. 2 - Suppose that youre in a moving car and the engine...Ch. 2 - A rocket becomes progressively easier to...Ch. 2 - If you drop an object, its acceleration toward the...Ch. 2 - Can you think of a reason why the acceleration of...Ch. 2 - You throw a ball straight upward. Compared with...Ch. 2 - A couple of your friends say that before a falling...Ch. 2 - How does the terminal speed of a parachutist...Ch. 2 - How does the gravitational force on a falling body...Ch. 2 - If and when Galileo dropped two balls from the top...Ch. 2 - This is a scenario common to many physics...Ch. 2 - A fanner urges his horse to pull a wagon. The...Ch. 2 - When Marie exerts a horizontal force of 200 N to...Ch. 2 - Two equal-mass blocks are connected by a length of...Ch. 2 - The bricks in this road were originally straight....Ch. 2 - Ken and Joanne are astronauts floating some...Ch. 2 - Can a clog wag its tail without the tail in turn...Ch. 2 - If you simultaneously drop a pair of tennis balls...Ch. 2 - If gravity between the Sun and Earth suddenly...Ch. 2 - A ball rolls down a curved ramp as shown. As its...Ch. 2 - A block of ice sliding without friction down an...Ch. 2 - The reason why a 10-kg rocks falls no faster than...Ch. 2 - As mass is added to a cart pushed by a constant...Ch. 2 - The amount of air resistance that acts on a...Ch. 2 - You drop a pillow off the edge of the...Ch. 2 - Alex pulls on the end of a spring attached to a...Ch. 2 - The amount of force with which a boxers punch...Ch. 2 - The force that propels a rocket is provided by (a)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
How is migration based on circannual rhythms poorly suited for adaptation to global climate change?
Campbell Biology (11th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which of the following is not one of the major types of metamorphism? Question 20Select one: a. Fold b. Contact c. Regional d. Sheararrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? m (b) What maximum acceleration will he experience? m/s²arrow_forwardOne end of a light spring with spring constant k is attached to the ceiling. A second light spring is attached to the lower end, with spring constant k. An object of mass m is attached to the lower end of the second spring. (a) By how much does the pair of springs stretch? (Use the following as necessary: k₁, k₂, m, and g, the gravitational acceleration.) Xtotal (b) What is the effective spring constant of the spring system? (Use the following as necessary: k₁, k₂, m, and g, the gravitational acceleration.) Keff (c) What If? Two identical light springs with spring constant k3 are now individually hung vertically from the ceiling and attached at each end of a symmetric object, such as a rectangular block with uniform mass density. In this case, with the springs next to each other, we describe them as being in parallel. Find the effective spring constant of the pair of springs as a system in this situation in terms of k3. (Use the following as necessary: k3, M, the mass of the symmetric…arrow_forward
- A object of mass 3.00 kg is subject to a force FX that varies with position as in the figure below. Fx (N) 4 3 2 1 x(m) 2 4 6 8 10 12 14 16 18 20 i (a) Find the work done by the force on the object as it moves from x = 0 to x = 5.00 m. J (b) Find the work done by the force on the object as it moves from x = 5.00 m to x = 11.0 m. ] (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 18.0 m. J (d) If the object has a speed of 0.400 m/s at x = 0, find its speed at x = 5.00 m and its speed at x speed at x = 5.00 m speed at x = 18.0 m m/s m/s = 18.0 m.arrow_forwardA crate with a mass of 74.0 kg is pulled up an inclined surface by an attached cable, which is driven by a motor. The crate moves a distance of 70.0 m along the surface at a constant speed of 3.3 m/s. The surface is inclined at an angle of 30.0° with the horizontal. Assume friction is negligible. (a) How much work (in kJ) is required to pull the crate up the incline? kJ (b) What power (expressed in hp) must a motor have to perform this task? hparrow_forwardA deli uses an elevator to move items from one level to another. The elevator has a mass of 550 kg and moves upward with constant acceleration for 2.00 s until it reaches its cruising speed of 1.75 m/s. (Note: 1 hp (a) What is the average power (in hp) of the elevator motor during this time interval? Pave = hp (b) What is the motor power (in hp) when the elevator moves at its cruising speed? Pcruising hp = 746 W.)arrow_forward
- A 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). d m v=0 -D- www (a) Find the distance of compression d (in m). m (b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). m/s (c) Find the distance D (in m) where the object comes to rest. m (d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…arrow_forwardAs shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track. R (a) What is x? m A (b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point? m/s (c) Does the object actually reach the top of the track, or does it fall off before reaching the top? O reaches the top of the track O falls off before reaching the top ○ not enough information to tellarrow_forwardA block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. wwww wwwwww a F x = 0 0 b i (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. ст (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cmarrow_forward
- You have a new internship, where you are helping to design a new freight yard for the train station in your city. There will be a number of dead-end sidings where single cars can be stored until they are needed. To keep the cars from running off the tracks at the end of the siding, you have designed a combination of two coiled springs as illustrated in the figure below. When a car moves to the right in the figure and strikes the springs, they exert a force to the left on the car to slow it down. Total force (N) 2000 1500 1000 500 Distance (cm) 10 20 30 40 50 60 i Both springs are described by Hooke's law and have spring constants k₁ = 1,900 N/m and k₂ = 2,700 N/m. After the first spring compresses by a distance of d = 30.0 cm, the second spring acts with the first to increase the force to the left on the car in the figure. When the spring with spring constant k₂ compresses by 50.0 cm, the coils of both springs are pressed together, so that the springs can no longer compress. A typical…arrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = incline angle is 0 = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m k www m 0.750 m/s. Thearrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www Ө m = 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s2 Direction O up the incline down the inclinearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY