
Concept explainers
Two small heavy balls have the same diameter but one weighs twice as much as the other. The balls are dropped from a second-story balcony at the exact same time. The time to reach the ground below will be.
- twice as long for the lighter ball as for the heavier one.
- longer for the lighter ball, but not twice as long.
- twice as long for the heavier ball as for the lighter one.
- longer for the heavier ball, but not twice as long.
- nearly the same for both balls.

The time taken for the two balls of different weight and same diameter to reach the ground.
Answer to Problem 1OQ
Solution:
Both the balls take nearly the same time to reach the ground.
Given:
Two balls of the same diameter but different weight.
Explanation of Solution
If the two balls with same diameter but different mass are thrown from a single storied building, then both balls will touch the ground at the exact time because the acceleration of the balls will not be affected by the weight of the balls. So, irrespective of the mass of the ball, the force applied on both balls will be the same.
Conclusion:
Both the balls will reach the ground at the same time irrespective of their weight and diameter.
Want to see more full solutions like this?
Chapter 2 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry & Chemical Reactivity
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





