Concept explainers
Generate random
and
Use MATLAB to compute each of the pairs of numbers that follow. In each case, check whether in first number is equal to the second.
(a)
(b)
(c)
(d)
(e)
(f)
a.
Calculate the given relationship.
Answer to Problem 1E
The solution of the system is
Explanation of Solution
Given:The matrix has been given
Concept Used:
Given,
Using given information calculate the determinant of the matrix.
Program:
clc clear close all A=round(10*rand(6)); B=round(20*rand(6))-10; a=det(A); b=det(A');
Quarry:
- First, we have defined the given matrix A and B.
- Then Calculate the determinant of the matrices.
b.
Calculate the given relationship.
Answer to Problem 1E
The solution of the system is
Explanation of Solution
Given:The matrix has been given
Concept Used:
Given,
Using given information calculate the determinant of the matrix.
Program:
clc clear close all A=round(10*rand(6)); B=round(20*rand(6))-10; a=det(A); b=det(A'); c=det(A)-det(A'); d=det(A-B); e=det(A)-det(B); f=det(A-B)-(det(A)-det(B)); g=det(A*B); h=det(A)*det(B); i=det(A*B)-det(A)*det(B); j=det(A'*B); k=det(A')*det(B); l=det(A'*B)-det(A')*det(B); m=det(A^-1); n=1/det(A); o=det(A^-1)-1/det(A); p=det(A*B^-1); q=det(A)/det(B); r=det(A*B^-1)-det(A)/det(B);
Quarry:
- First, we have defined the given matrix A and B.
- Then Calculate the determinant of the matrices.
c.
Calculate the given relationship.
Answer to Problem 1E
The solution of the system is
Explanation of Solution
Given:The matrix has been given
Concept Used:
Given,
Using given information calculate the determinant of the matrix.
Program:
clc clear close all A=round(10*rand(6)); B=round(20*rand(6))-10; a=det(A); b=det(A'); c=det(A)-det(A'); d=det(A-B); e=det(A)-det(B); f=det(A-B)-(det(A)-det(B)); g=det(A*B); h=det(A)*det(B); i=det(A*B)-det(A)*det(B); j=det(A'*B); k=det(A')*det(B); l=det(A'*B)-det(A')*det(B); m=det(A^-1); n=1/det(A); o=det(A^-1)-1/det(A); p=det(A*B^-1); q=det(A)/det(B); r=det(A*B^-1)-det(A)/det(B);
Quarry:
- First, we have defined the given matrix A and B.
- Then Calculate the determinant of the matrices.
d.
Calculate the given relationship.
Answer to Problem 1E
The solution of the system is
Explanation of Solution
Given:The matrix has been given
Concept Used:
Given,
Using given information calculate the determinant of the matrix.
Program:
clc clear close all A=round(10*rand(6)); B=round(20*rand(6))-10; a=det(A); b=det(A'); c=det(A)-det(A'); d=det(A-B); e=det(A)-det(B); f=det(A-B)-(det(A)-det(B)); g=det(A*B); h=det(A)*det(B); i=det(A*B)-det(A)*det(B); j=det(A'*B); k=det(A')*det(B); l=det(A'*B)-det(A')*det(B); m=det(A^-1); n=1/det(A); o=det(A^-1)-1/det(A); p=det(A*B^-1); q=det(A)/det(B); r=det(A*B^-1)-det(A)/det(B);
Quarry:
- First, we have defined the given matrix A and B.
- Then Calculate the determinant of the matrices.
e.
Calculate the given relationship.
Answer to Problem 1E
The solution of the system is
Explanation of Solution
Given:The matrix has been given
Concept Used:
Given,
Using given information calculate the determinant of the matrix.
Program:
clc clear close all A=round(10*rand(6)); B=round(20*rand(6))-10; a=det(A); b=det(A'); c=det(A)-det(A'); d=det(A-B); e=det(A)-det(B); f=det(A-B)-(det(A)-det(B)); g=det(A*B); h=det(A)*det(B); i=det(A*B)-det(A)*det(B); j=det(A'*B); k=det(A')*det(B); l=det(A'*B)-det(A')*det(B); m=det(A^-1); n=1/det(A); o=det(A^-1)-1/det(A); p=det(A*B^-1); q=det(A)/det(B); r=det(A*B^-1)-det(A)/det(B);
Quarry:
- First, we have defined the given matrix A and B.
- Then Calculate the determinant of the matrices.
f.
Calculate the given relationship.
Answer to Problem 1E
The solution of the system is
Explanation of Solution
Given:The matrix has been given
Concept Used:
Given,
Using given information calculate the determinant of the matrix.
Program:
clc clear close all A=round(10*rand(6)); B=round(20*rand(6))-10; a=det(A); b=det(A'); c=det(A)-det(A'); d=det(A-B); e=det(A)-det(B); f=det(A-B)-(det(A)-det(B)); g=det(A*B); h=det(A)*det(B); i=det(A*B)-det(A)*det(B); j=det(A'*B); k=det(A')*det(B); l=det(A'*B)-det(A')*det(B); m=det(A^-1); n=1/det(A); o=det(A^-1)-1/det(A); p=det(A*B^-1); q=det(A)/det(B); r=det(A*B^-1)-det(A)/det(B);
Quarry:
- First, we have defined the given matrix A and B.
- Then Calculate the determinant of the matrices.
Want to see more full solutions like this?
Chapter 2 Solutions
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Additional Math Textbook Solutions
Precalculus: Mathematics for Calculus (Standalone Book)
College Algebra (Collegiate Math)
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Basic College Mathematics
Elementary & Intermediate Algebra
Calculus: Early Transcendentals (2nd Edition)
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning