
Plate tectonics works today in the same way as in the past. Can you project the future positions of the continents by looking at a map of their present positions and the positions of the mid-ocean ridges (see Fig. 2.5)? Which oceans are growing and which are shrinking? Where will new oceans form?
FIGURE 2.5 The major features of the sea floor. Compare this map with Figure 2.6.

To predict: The future positions of the continents by looking at the map of their present positions and the positions of the mid-ocean ridges.
Introduction: The continents in the earth’s crust or plates that float on the mantle portion of the Earth are called plate tectonics. The movement of plate causes formation of the mountain and continents over a millions of years that result in the geographical changes of the Earth.
Explanation of Solution
Plate tectonics are the lithospheric plates composed of continental and oceanic lithosphere. Refer to Fig. 2.5, “The major features of the sea floor”, in the text book. The future positions of the continents are given in Table 1.
Tabular representation: The following table shows the future positions of the continents.
Table 1: The future positions of the continents
Continents | Future positions |
North and South America | Farther west toward the Pacific Ocean |
Europe and Asia | Farther southeast |
Australia | Farther northeast |
Africa | Farther east |

To determine: The oceans that are growing and shrinking.
Introduction: The continents in the earth’s crust or plates that float on the mantle portion of the Earth are called plate tectonics. The movement of plate causes formation of the mountain and continents over a millions of years, which result in the geographical changes of the Earth.
Explanation of Solution
Plate tectonics are the lithospheric plates composed of continental and oceanic lithosphere. Refer to Fig. 2.5, “The major features of the sea floor”, in the text book. The shrinking ocean is Pacific Ocean (expected to be narrower) and the growing ocean is Atlantic Ocean (expected to be wider).

To determine: Where will the new oceans form.
Introduction: The continents in the earth’s crust or plates that float on the mantle portion of the Earth are called Plate tectonics. The movement of plate causes formation of the mountain and continents over a millions of years, which result in the geographical changes of the Earth.
Explanation of Solution
Refer to Fig. 2.5, “The major features of the sea floor”, in the text book. The edges of several plates are formed by the mid-ocean ridges. At this point, the lithospheric plates move apart to form the new oceanic lithosphere (new sea floor). If the plate contains a block of continental crust, the plate moves away from the ridge, and the continent is carried along with the plate.
Want to see more full solutions like this?
- Please indentify the unknown organismarrow_forwardPlease indentify the unknown organismarrow_forward5G JA ATTC 3 3 CTIA A1G5 5 GAAT I I3 3 CTIA AA5 Fig. 5-3: The Eco restriction site (left) would be cleaved at the locations indicated by the arrows. However, a SNP in the position shown in gray (right) would prevent cleavage at this site by EcoRI One of the SNPs in B. rapa is found within the Park14 locus and can be detected by RFLP analysis. The CT polymorphism is found in the intron of the Bra013780 gene found on Chromosome 1. The Park14 allele with the "C" in the SNP has two EcoRI sites and thus is cleaved twice by EcoRI If there is a "T" in that SNP, one of the EcoRI sites is altered, so the Park14 allele with the T in the SNP has only one EcoRI site (Fig. 5-3). Park14 allele with SNP(C) Park14 allele with SNPT) 839 EcoRI 1101 EcoRI 839 EcoRI Fig. 5.4: Schematic restriction maps of the two different Park14 alleles (1316 bp long) of B. rapa. Where on these maps is the CT SNP located? 90 The primers used to amplify the DNA at the Park14 locus (see Fig. 5 and Table 3 of Slankster et…arrow_forward
- From your previous experiment, you found that this enhancer activates stripe 2 of eve expression. When you sequence this enhancer you find several binding sites for the gap gene, Giant. To test how Giant interacts with eve, you decide to remove all of the Giant binding sites from the eve enhancer. What results do you expect to see with respect to eve expression?arrow_forwardWhat experiment could you do to see if the maternal gene, bicoid, is sufficient to form anterior fates?arrow_forwardYou’re curious about the effect that gap genes have on the pair-rule gene, evenskipped (eve), so you isolate and sequence each of the eve enhancers. You’re particularly interested in one of the enhancers, which is just upstream of the eve gene. Describe an experimental technique you would use to find out where this particular eve enhancer is active.arrow_forward
- For short answer questions, write your answers on the line provided. To the right is the mRNA codon table to use as needed throughout the exam. First letter U บบบ U CA UUCPhe UUA UCU Phe UCC UUG Leu CUU UAU. G U UAC TV UGCys UAA Stop UGA Stop A UAG Stop UGG Trp Ser UCA UCG CCU] 0 CUC CUA CCC CAC CAU His CGU CGC Leu Pro CCA CAA Gin CGA Arg CUG CCG CAG CGG AUU ACU AAU T AUC lle A 1 ACC Thr AUA ACA AUG Mot ACG AGG Arg GUU GCU GUC GCC G Val Ala GAC Asp GGU GGC GUA GUG GCA GCG GAA GGA Gly Glu GAGJ GGG AACASH AGU Ser AAA1 AAG Lys GAU AGA CAL CALUCAO CAO G Third letter 1. (+7) Use the table below to answer the questions; use the codon table above to assist you. The promoter sequence of DNA is on the LEFT. You do not need to fill in the entire table. Assume we are in the middle of a gene sequence (no need to find a start codon). DNA 1 DNA 2 mRNA tRNA Polypeptide C Val G C. T A C a. On which strand of DNA is the template strand (DNA 1 or 2)?_ b. On which side of the mRNA is the 5' end (left or…arrow_forward3. (6 pts) Fill in the boxes according to the directions on the right. Structure R-C R-COOH OH R-OH i R-CO-R' R R-PO4 R-CH3 C. 0 R' R-O-P-OH 1 OH H R-C-H R-N' I- H H R-NH₂ \H Name Propertiesarrow_forward4. (6 pts) Use the molecule below to answer these questions and identify the side chains and ends. Please use tidy boxes to indicate parts and write the letter labels within that box. a. How many monomer subunits are shown? b. Box a Polar but non-ionizable side chain and label P c. Box a Basic Polar side chain and label BP d. Box the carboxyl group at the end of the polypeptide and label with letter C (C-terminus) H H OHHO H H 0 HHO H-N-CC-N-C-C N-C-C-N-GC-OH I H-C-H CH2 CH2 CH2 H3C-C+H CH2 CH2 OH CH CH₂ C=O OH CH2 NH2arrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning





