The Cosmic Perspective
The Cosmic Perspective
7th Edition
ISBN: 9780321839558
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: Addison-Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19, Problem 31EAP

Choose the best answer to each of the following. Explain your reasoning with one or more complete sentences.

31. How do we determine the Milky Ways mass outside the Sun’s orbit? (a) from the Suns orbitai velocity and its distance from the center of our galaxy (b) from the orbits of halo stars near the Sun (c) from the orbits of stars and gas clouds orbiting the galactic center at greater distances than the Sun

Blurred answer
Students have asked these similar questions
Read the questions slowly and answer with precise and long details about each of the questions. Answer correctly and follow my guidelines for a long and wonderful review after results. Your target/main observable galaxy is the whirlpool galaxy. Target: Whirlpool Galaxy Object Type: Galaxy Distance: 37 million light-years Constellation: Canes VenaticiDO NOT COPY AND PASTE OTHER WORK OR THINGS FROM THE INTERNET, use your own words. In 500 words, compare and contrast the specific object to at least 2 other objects in its sourceclass (eg. if it's an isolated star, to different types of isolated stars). Explain both observational andphysical differences, as well as what the comparison teaches us about the source class in general.
As we discussed, clouds are made of a great many small drops. Really - a great many. Imagine a liquid cloud that fills a volume of 1 km3. The clouds contains 100 drops per cubic centimeter; for the sake of argument assume that each is 10 microns (micrometers) in radius. A. How many drops does the cloud contain? Compare this to a big number - say, the number of stars in the galaxy. B. What mass of water does the cloud contain? Compare this to something big - elephants, trucks, that sort of thing. C. What fraction of the cloud volume is filled with condensed water? One way to approach this is to compare the density of the suspended liquid water to the density of the surrounding air. D. How many 1 mm drizzle drops could you make from all the cloud drops? E. How much energy was released when this water condensed from vapor to liquid? If the water condensed in 20 minutes (a reasonable lifetime for a small cloud), what was the (energy per time)? power
Astronomy Question:  Read the questions slowly and answer with precise and long details about each of the questions. Answer correctly and follow my guidelines for a long and wonderful review after results. Your target/main observable galaxy is the whirlpool galaxy. Target: Whirlpool Galaxy Object Type: Galaxy Distance: 37 million light-years Constellation: Canes Venatici. DO NOT COPY AND PASTE OTHER WORK OR THINGS FROM THE INTERNET, use your own words. In 500 words, please explain the relevance of this object to the physics course material in university andits importance to astronomy. (Some question you may seek to answer are: What beyond the objectitself is learned by studying this class of objects? What sorts of telescopes and observations would beneeded for more detailed, broader reaching studies of this source and objects of its nature?)
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY