
Delmar's Standard Textbook Of Electricity
7th Edition
ISBN: 9781337900348
Author: Stephen L. Herman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 1RQ
What is the dielectric?
Expert Solution & Answer

To determine
What is a dielectric.
Explanation of Solution
A dielectric is an insulating material used to separate two metal platesin a capacitor. The value of dielectric is one the parameters that determines the capacitance of the capacitor.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a) Find the Real and Imaginary Voltage across the inductor to 3 decimal points.
b) Find the current and phase angle (phasor) magnitude from the Vs source to 3 decimal points.
c) Find the magnitude and phase angle of the complex power(phasor) delivered by the Vs source to 3 decimal points.
Consider the circuit diagram below. If four identical capacitors, each with a capacitance of 0.07 F, are used to smooth the output, what will the ripple voltage VR be? The diode forward bias voltage, VF, is found to be 0.5 V. Note that the amplitude of v(t) is given in VRMS.
a) Find the complex power absorbed by the -j3 ohm capacitor to 3 decimal points.b) Find the complex power absorbed by the 4 ohm resistor to 3 decimal pointsc) Find the complex power absorbed by the j5 ohm inductor to 3 decimal points.
Chapter 19 Solutions
Delmar's Standard Textbook Of Electricity
Ch. 19 - 1. What is the dielectric?
Ch. 19 - List three factors that determine the capacitance...Ch. 19 - A capacitor uses air as a dielectric and has a...Ch. 19 - 4. In what form is the energy of a capacitor...Ch. 19 - Four capacitors having values of 20 F, 50 F, 40 F,...Ch. 19 - f the four capacitors in Question 5 were to be...Ch. 19 - A 22-F capacitor is connected in series with a...Ch. 19 - 8. A 450-pF capacitor has a total charge time of...Ch. 19 - Can a nonpolarized capacitor be connected to a DC...Ch. 19 - Explain how an AC electrolytic capacitor is...
Ch. 19 - What type of electrolytic capacitor will be...Ch. 19 - A 500-nF capacitor is connected to a 300-k...Ch. 19 - A film-type capacitor is marked 253 H. What are...Ch. 19 - A postage stamp mica capacitor has the following...Ch. 19 - A postage stamp capacitor has the following color...Ch. 19 - You are changing the starting relay on a central...Ch. 19 - You are an electrician working in an industrial...Ch. 19 - You find that a 25-F capacitor connected to 480...Ch. 19 - Fill in all the missing values. Refer to the...Ch. 19 - Two capacitors having values of 80 F and 60 F are...Ch. 19 - Three capacitors having values of 120 F, 20 F, and...Ch. 19 - Three capacitors having values of 2.2 F, 280 F,...Ch. 19 - A 470-F capacitor is connected in series with a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I am looking for schematic ideas or recommendations for designing the required step-down system. Since the input is a 600V DC supply, a DC-DC converter may be necessary, as transformers are typically used for AC voltage. Key considerations would include: Voltage regulation: Ensuring a stable and consistent 120V DC output.Component selection: Choosing appropriate DC-DC converter modules, capacitors for filtering, and protective components such as fuses or circuit breakers.Lighting system: Recommendations on energy-efficient lighting options like LEDs, which work well with DC power and offer durability for railway applications.Thermal management: Addressing heat dissipation within the converter and lighting circuit.Safety and standards: Complying with safety regulations for electrical systems in railways. I would greatly appreciate detailed insights into the design process, including key circuit components and configurations, as well as any schematic diagrams or references.arrow_forward1 2. For the following closed-loop system, G(s) = and H(s) = ½ (s+4)(s+6) a. Please draw the root locus by hand and mark the root locus with arrows. Calculate the origin and angle for asymptotes. b. Use Matlab to draw the root locus to verify your sketch. Input R(s) Output C(s) KG(s) H(s)arrow_forward1. In the following unity feedback system, we have G(s) = R(s) + K(s + 1) s(s + 2)(s +5) G(s) C(s) use Routh-Hurwitz stability criterion to find the range of K for the stability of the system.arrow_forward
- What is the current flowing through the load resistor, RL (in ARMS)? How much power does the voltage source, V1, provide to the circuit? The magnitude of V1 is given in VRMS.arrow_forwardWe wish to power an extremely bright light to communicate with a neighbor using morse code. We let the system run 24/7, but we swap out the battery every 24 hours for a fully charged one and recharge the drained battery with a solar charger. Based on the signal we are sending, the light draws 2.5 A of current for 2 seconds every 5 seconds. As well, the computer sending the signal to the light continuously draws 120 mA. A 12 V lead acid battery is used to provide the power. To preserve the longevity of the battery we wish to keep the lower limit of the SoC to 75%. (a) What is the minimum battery capacity in Ah required? (b) If a 60 W 12 V solar panel was used to recharge the battery, noting that we will keep the lower SoC to 75%, how many hours of adequate sunlight would be needed each day? (c) If the solar charger malfunctions, and we are forced to use one battery without recharging, what would the battery’s SoC be after 2 days?arrow_forward1. In the following unity feedback system, we have G(s) = R(s) + K(s + 1) s(s + 2)(s +5) G(s) C(s) use Routh-Hurwitz stability criterion to find the range of K for the stability of the system.arrow_forward
- 4. Discussion: Compare between theoretical effect of KD at first order and second order systems regarding steady-state errors and transient responses with the practical obtained results whenever applying step input signal. In Experiment Derivative Controller 55-82arrow_forwardFor the state space model, find the following: 1. Identify the state-space matrices A,B,C, and D. 2. Compute the transfer function G(s) analytically (by hand). 3. Solve for x(t) given a step input u(t) =1 and zero initial conditions (use transition matrix). 4. Use MATLAB to compute the transfer function. 5. Plot the step response using MATLAB. [X] = 71+0u y = x1 + x2 -2 นarrow_forwardA DPSK has the following data input: d(n) =101011010001 1. Find the output coded sequence and the carrier phase. 2. Recover the input data from the output coded sequence.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
02 - Sinusoidal AC Voltage Sources in Circuits, Part 1; Author: Math and Science;https://www.youtube.com/watch?v=8zMiIHVMfaw;License: Standard Youtube License