Concept explainers
(a)
Interpretation:
The atom that oxidized, reduced, oxidizing agent and reducing agent should be determined.
Concept Introduction:
The
(b)
Interpretation:
The atom that oxidized, reduced, oxidizing agent and reducing agent should be determined.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. The balancing of oxidation-reduction reaction can be done by simple method by comparing the number of each atoms on both sides of the reaction arrow without addition of hydrogen ion, water molecule and electrons from outside.
(c)
Interpretation:
The atom that oxidized, reduced, oxidizing agent and reducing agent should be determined.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. The balancing of oxidation-reduction reaction can be done by simple method by comparing the number of each atoms on both sides of the reaction arrow without addition of hydrogen ion, water molecule and electrons from outside.
(d)
Interpretation:
The atom that oxidized, reduced, oxidizing agent and reducing agent should be determined.
Concept Introduction:
The oxidation-reduction reaction is also known as a redox reaction. In this reaction, one reactant is oxidized and other is reduced. The balancing of oxidation-reduction reaction can be done by simple method by comparing the number of each atoms on both sides of the reaction arrow without addition of hydrogen ion, water molecule and electrons from outside.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- 5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3arrow_forwardShow work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning