Understanding Motor Controls
Understanding Motor Controls
4th Edition
ISBN: 9781337798686
Author: Stephen L. Herman
Publisher: Delmar Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 1RQ

What material was used to make the first Hall generator?

Expert Solution & Answer
Check Mark
To determine

The material used to make first Hall generator.

Explanation of Solution

The Hall effect was discovered by Edward H. Hall and is a principle widely used in today’s industries. The device that works on the principle of the Hall effect is the Hall generator.

The material used by Hall to produce the Hall effect in the first Hall generator was gold. However, nowadays, gold has been replaced by semiconductors because they are less expensive and work better.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3.) 13.152* - A sphere (m = 2 kg) is connected to a fixed point O by an inextensible cord (L = 1.2 m). The sphere rests on a frictionless horizontal surface at a distance of x = 0.5 m from O when it is given a velocity (V.) in a direction perpendicular to OA. It moves freely until it reach A', when the cord becomes taut. Find the maximum possible velocity v. if the impulse of the force exerted on the cord is not to exceed F = 3Ns.
4.) 13.165* - Two billiard balls A & B (same mass m & diameter d = 2.37") are as shown. Ball A has velocity V₁ = 3 ft/s when it strikes B, which is at rest. B then moves in the x direction after impact. Find (a) angle 0, (b) the velocity of B after impact (VB'). Positional variables are x = 6" and y = 10", and e = 0.9.
We will consider a linear system and a nonlinear system under uncertainty, each expressed in the form of a set of stochastic differential equation (SDE) as follows: = da (Ax+ Bu)dt + Gdw, dx = f(x,u,t)dt+Gdw, (1) (2) where x is the state, u is the control, and dw is a differential increment of standard Brownian motion, i.e., E[dw] = 0 and E [dw(t)dw(t)] = dt-1. In this problem, we consider the linear SDE, Eq. (1), with a very simple model where x = R², u = [0,0] (no control), and dw R². The matrices A, B, and G are given as follows: A=02x2, B=02x2; G = [000] (3) where σp Є R represents the degree of the uncertainty, and let us take σ₁ = 2 and σ2 = 3. Assume that the initial state is deterministic and e(t = 0) = [0,0]. Take the following steps to simulate the given SDE for 1 € [0, 1]: (a): Consider the increments of w between each time interval [+1). Derive the analytical expression of Aw using w~N(02, 12), where Aw, w(tk+1) — w(tk). (c): Derive the approximate continuous-time EoM from…
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Text book image
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Text book image
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Text book image
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license