Chemistry: Structure and Properties (2nd Edition)
Chemistry: Structure and Properties (2nd Edition)
2nd Edition
ISBN: 9780134293936
Author: Nivaldo J. Tro
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 1E

What is the pH range of human blood? How is human blood maintained in this pH range?

Expert Solution & Answer
Check Mark
Interpretation Introduction

To determine: pH range of human blood and how its maintained in this pH range.

Answer to Problem 1E

Solution: The pH range of human blood is 7.3-7.4 .The buffers present in the human body helps to maintain the pH range of the human blood.

Explanation of Solution

Large amounts of carbonic acid, a weak acid, bicarbonate ion and a base are present in human blood which together helps to maintain pH level between 7.3-7.4 person has chances of falling sick or dying if the pH level of the blood lowers 6.8 or rises above 7.8 . Excess acids present in the blood are neutralized by the action of bicarbonate ion present and on the other hand excess bases get neutralized by the carbonic acid present. Thus all these factors help to maintain the pH level of the human blood.

Conclusion

Human blood is an excellent example of buffer solution.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values ​​have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?
One liter of chlorine gas at 1 atm and 298 K reacts completely with 1.00 L of nitrogen gas and 2.00 L of oxygen gas at the same temperature and pressure. A single gaseous product is formed, which fills a 2.00 L flask at 1.00 atm and 298 K. Use this information to determine the following characteristics of the product:(a) its empirical formula;(b) its molecular formula;(c) the most favorable Lewis formula based on formal charge arguments (the central atom is N);(d) the shape of the molecule.

Chapter 17 Solutions

Chemistry: Structure and Properties (2nd Edition)

Ch. 17 - The pH at the equivalence point of the titration...Ch. 17 - The volume required to reach the equivalence point...Ch. 17 - In the titration of a strong acid with a strong...Ch. 17 - In the titration of a weak acid with a strong...Ch. 17 - The titration of a diprotic acid with sufficiently...Ch. 17 - In the titration of a polyprotic acid, the volume...Ch. 17 - What is the difference between the endpoint and...Ch. 17 - What is an indicator? How can an indicator signal...Ch. 17 - What is the solubility-product constant? Write a...Ch. 17 - What is molar solubility? How do you obtain the...Ch. 17 - How does a common ion affect the solubility of a...Ch. 17 - How is the solubility of an ionic compound with a...Ch. 17 - For a given solution containing an ionic compound,...Ch. 17 - What is selective precipitation? Under which...Ch. 17 - In which of these solutions does HNO2 ionize less...Ch. 17 - A formic acid solution has a pH of 3.25. Which of...Ch. 17 - Solve an equilibrium problem (using an ICE table)...Ch. 17 - Solve an equilibrium problem (using an ICE table)...Ch. 17 - Calculate the percent ionization of a 0.15 M...Ch. 17 - Calculate the percent ionization of a 0.13 M...Ch. 17 - Solve an equilibrium problem (using an ICE table)...Ch. 17 - Solve an equilibrium problem (using an ICE table)...Ch. 17 - A buffer contains significant amounts of acetic...Ch. 17 - A buffer contains significant amounts of ammonia...Ch. 17 - Use the HendersonHasselbalch equation to calculate...Ch. 17 - Use the Henderson—Hasselbalch equation to...Ch. 17 - Use the Henderson—Hasselbalch equation to...Ch. 17 - Use the Henderson—Hasselbaich equation to...Ch. 17 - Calculate the pH of the solution that results from...Ch. 17 - Calculate the pH of the solution that results from...Ch. 17 - Calculate the ratio of NaF to HF required to...Ch. 17 - Calculate the ratio of CH3NH2 to CH3NH3Cl...Ch. 17 - What mass of sodium benzoate should you add to...Ch. 17 - What mass of ammonium chloride should you add to...Ch. 17 - A 250.0-mL buffer solution is 0.250 M in acetic...Ch. 17 - A 100.0-mL buffer solution is 0.175 M in HCIO and...Ch. 17 - For each solution, calculate the initial and final...Ch. 17 - For each solution, calculate the initial and final...Ch. 17 - A 350.0-mL buffer solution is 0.150 in HF and...Ch. 17 - A 100.0-mL buffer solution is 0.100 M ¡n NH3 and...Ch. 17 - Determine whether the mixing of each pair of...Ch. 17 - Determine whether the mixing of each pair of...Ch. 17 - Blood s buffered by carbonic acid and the...Ch. 17 - The fluids within cells are buffered by H2PO4 and...Ch. 17 - Which buffer system is the best choice to create a...Ch. 17 - Which buffer system is the best choice to create a...Ch. 17 - A 500.0-mL buffer solution is 0.100 M in HNO2 and...Ch. 17 - Prob. 58ECh. 17 - The graphs labeled (a) and (b) are the titration...Ch. 17 - Two 25.0-mL samples, one 0.100 M HCI and the other...Ch. 17 - Two 20.0-mL samples, one 0.200 M KOH and the other...Ch. 17 - Prob. 62ECh. 17 - Consider the curve shown here for the titration of...Ch. 17 - Consider the curve shown here for the titration of...Ch. 17 - Consider the titration of a 35.0-mL sample of...Ch. 17 - A 20.0-mL sample of 0.125 M HNO3 is titrated with...Ch. 17 - Consider the titration of a 25.0-mL sample of...Ch. 17 - Prob. 68ECh. 17 - Prob. 69ECh. 17 - Prob. 70ECh. 17 - Consider the titration of a 25.0-mL sample of...Ch. 17 - Prob. 72ECh. 17 - Prob. 73ECh. 17 - Prob. 74ECh. 17 - Prob. 75ECh. 17 - Prob. 76ECh. 17 - Prob. 77ECh. 17 - Prob. 78ECh. 17 - Methyl red has a pKaof 5.0 and is red in its acid...Ch. 17 - Phenolphthalein has a pKaof 9.7. It is colorless...Ch. 17 - Referring to Table 17.1pick an indicator for use...Ch. 17 - Referring to Table 17.1 pick an indicator for use...Ch. 17 - Write balanced equations and expressions for...Ch. 17 - Prob. 84ECh. 17 - Refer to the Kspvalues in Table 17.2 to calculate...Ch. 17 - Prob. 86ECh. 17 - Use the given molar solubilities in pure water to...Ch. 17 - Prob. 88ECh. 17 - Two compounds with general formulas AX and AX2...Ch. 17 - Consider the compounds with the generic formulas...Ch. 17 - Refer to the Ksp value from Table 17.2 to...Ch. 17 - Prob. 92ECh. 17 - Calculate the molar solubility of barium fluoride...Ch. 17 - Prob. 94ECh. 17 - Calculate the molar solubility of calcium...Ch. 17 - Calculate the solubility (in grams per 1.00102 of...Ch. 17 - Is each compound more soluble in acidic solution...Ch. 17 - Is each compound more soluble in acidic solution...Ch. 17 - A solution containing sodium fluoride is mixed...Ch. 17 - A solution containing potassium bromide is mixed...Ch. 17 - Predict whether a precipitate forms if you mix...Ch. 17 - Prob. 102ECh. 17 - Prob. 103ECh. 17 - Prob. 104ECh. 17 - A solution is 0.010 M in Ba2+ and 0.020 M in Ca2+...Ch. 17 - Prob. 106ECh. 17 - A solution is made 1.1103M in Zn(NO3)2 and 0.150 M...Ch. 17 - A 120.0-mL sample of a solution that is 2.8103M in...Ch. 17 - Use the appropriate values of Kspand Kfto find the...Ch. 17 - Prob. 110ECh. 17 - A 1.500-mL solution contains 2.05 g of sodium...Ch. 17 - A solution ¡s made by combining 10.0 ml of 17.5 M...Ch. 17 - A buffer is created by combining 150.0 mL of 0.25...Ch. 17 - A buffer is created by combining 3.55 g of NH3...Ch. 17 - A 1.0-L buffer solution initially contains 0.25...Ch. 17 - A 250.0-mL buffer solution initially contains...Ch. 17 - In analytical chemistry, bases used for titrations...Ch. 17 - A 0.5224-g sample of an unknown monoprotic acid...Ch. 17 - A 0.25-mol sample of a weak acid with an unknown...Ch. 17 - A 5.55-g sample of a weak acid with Ka=1.3104 is...Ch. 17 - A 0.552-g sample of ascorbic acid (vitamin C) is...Ch. 17 - Sketch the titration curve from Problem 121by...Ch. 17 - One of the main components of hard water is CaCO3....Ch. 17 - Gout—a condition that results in joint swelling...Ch. 17 - Pseudogout, a condition with symptoms similar to...Ch. 17 - Calculate the solubility of silver chloride in a...Ch. 17 - Calculate the solubility of CuX ¡n a solution that...Ch. 17 - Aniline, C6H5NH2, is an important organic base...Ch. 17 - The Kbof hydroxylamine, NH2OH is 1.0108 . A buffer...Ch. 17 - Prob. 130ECh. 17 - Prob. 131ECh. 17 - Prob. 132ECh. 17 - What relative masses of dimethyl amine and...Ch. 17 - You are asked to prepare 2.0 L of a HCN/NaCN...Ch. 17 - Prob. 135ECh. 17 - Prob. 136ECh. 17 - Prob. 137ECh. 17 - Prob. 138ECh. 17 - When excess solid Mg(OH)2 is shaken with 1.00 L of...Ch. 17 - Prob. 140ECh. 17 - Calculate the solubility of Au(OH)3 in (a) water...Ch. 17 - Calculate the concentration of I in a solution...Ch. 17 - Prob. 143ECh. 17 - Prob. 144ECh. 17 - Find the pH of a solution prepared from 1.0 L of a...Ch. 17 - Prob. 146ECh. 17 - Prob. 147ECh. 17 - Prob. 148ECh. 17 - Consider three solutions: 0.10 M solution of a...Ch. 17 - Prob. 150ECh. 17 - Prob. 151ECh. 17 - Prob. 152ECh. 17 - Prob. 153ECh. 17 - Prob. 154ECh. 17 - A certain town gets its water from an underground...Ch. 17 - Prob. 156ECh. 17 - Prob. 157ECh. 17 - A buffer is 0.100 M in NH4CI and 0.100 M in NH3....Ch. 17 - What is the pH of a buffer that is 0.120 M in...Ch. 17 - Prob. 3SAQCh. 17 - Prob. 4SAQCh. 17 - Prob. 5SAQCh. 17 - Prob. 6SAQCh. 17 - Prob. 7SAQCh. 17 - A 10.0-mL sample of 0.200 M hydrocyanic acid (HCN)...Ch. 17 - Prob. 9SAQCh. 17 - Prob. 10SAQCh. 17 - Prob. 11SAQCh. 17 - Prob. 12SAQCh. 17 - Calculate the molar solubility of magnesium...Ch. 17 - Prob. 14SAQCh. 17 - Prob. 15SAQ

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License