PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The telephone-cable reel rolls without
slipping on the horizontal surface. If point A
on the cable has a velocity VÀ = 0.84 m/s to
the right, compute the velocity of the center
O (positive if to the right, negative if to the
left) and the angular velocity w (positive if
counterclockwise, negative if clockwise) of
the reel.
Answers:
Vo =
W =
1.91 m
4
0.69 m
1.315
i 1.376
Ho
m/s
VA
rad/s
The telephone-cable reel rolls without slipping on the horizontal surface. If point A on the cable has a velocity VA = 0.70 m/s to the right,
compute the velocity of the center O (positive if to the right, negative if to the left) and the angular velocity w (positive if
counterclockwise, negative if clockwise) of the reel.
1.72 m
A
Answers:
Vo =
W=
0.60 m
1.075
i 1.25
m/s
rad/s
Draw FBD and determine the number of revolutions done by Disk E at thesame time.
Knowledge Booster
Similar questions
- The flexible band F is attached at E to the rotating sector and leads over the guide pulley G. Determine the angular velocities of links AB and BD for the position shown if the band has a speed of 2.0 m/s. The angular velocities are positive if counterclockwise, negative if clockwise. OD 2.0 m/s 0.16 m 11o 0.24 m 0.32 0.34 m A E Answers: rad/s WAB rad/s WBD IIarrow_forwardThe slender bar is moving in general plane motion with the indicated linear and angular properties. Locate the instantaneous center of zero velocity (distances x to the right of G and y above G) and determine the magnitudes of the velocities of points A and B. A Answers: X = y = VA = 0.30 m VB= i i 4.0 rad/s G 0.30 m -20° 2.0 m/s B 3 m m/s m/sarrow_forwardThe rod AB has a mass of 36 kg and a length of 1.9m. The spring is unstretched when 0- 45°. The spring constant k is 226 N/m. B Find the angular velocity of rod AB at 0 - 0. if the rod is released from rest when 0. 45°. Give your answer with 2 decimals.arrow_forward
- The angular velocity of the disk is ω=10 rad/s. The radius of the disk is 0.8 m. Determine the magnitude of the velocity of point A on the disk.arrow_forwardThe r-y coordinate system is body fixed with respect to the bar. The angle 0 (in radians) is given as a function of time by 0 = 0.1+0.08t². The a coordinate of the sleeve A (in feet) is given as a function of time by x = 3+0.06t3. Determine the velocity of the sleeve at t = 4 s relative to a nonrotating reference frame with its origin at B. (Although you are determining the velocity of A relative to a nonrotating reference frame, your answer will be expressed in components in terms of the body-fixed reference frame.) (Figure 1) Enter the a and y components of the velocity separated by a comma. Πν ΑΣφ It vec ? VA 2, VA y = 2.88,4.92 ft/s Submit Previous Answers Request Answer X Incorrect; Try Again; 6 attempts remaining Figure < Return to Assignment Provide Feedback 1 of 1arrow_forward1. The slotted link is pinned at 0, and as a result of the constant angular velocity é = 6 rad's it drives the peg P for a short distance along the spiral guide r = (0.6 0) m where e is in radians. When e = 80 deg, Find: a. Find e, é, ë,r,r, ř. (in radians) b. The radial components, transverse components, and magnitudes of the velocity [4maeie). - The radial components, transverse components, and magnitudes of the acceleration of P at the instant. asks). %3D 0.8 m r=0.6 0 ô =6 rad/sarrow_forward
- The uniform 1,157-mm link AB slides up on frictionless rollers as shown below. At the instant shown, the link AB is vertical and the absolute velocity of point A is 19.9 m/s in the direction shown. Ignore the link thickness and roller diametres. For this configuration, 01=39 degrees and O2=25 degrees as shown. VA 01 A G Calculate the absolute velocity of the centre of mass at G. Give your answer in the form Z = 2 VGx + VGy in m/s where vGx is the horizontal component of the velocity vector (positive to the right) and VGy is the vertical component of the velocity vector (positive upwards). Round your final answer to two decimal places.arrow_forwardPlease solve this using scalar analysis by getting the scalar components at the x and y direction and not by using i-j-karrow_forwardThe wheel slips as it rolls (in the same direction as point O). If vo = 6 ft/sec and if the magnitude of the velocity of A with respect to B is 3 ft/sec, locate the instantaneous center C of zero velocity and find the magnitude of the velocity of point P. A B D 9" P 5" VO v of P = ft/secarrow_forward
- This is a dynamics question. Hint: vC=2.5 ft/s left, vE=7.91 ft/s, theta=18.4 deg from -y-axisarrow_forwardThe rod OA rotates clockwise at a constant angular velocity of 0 = (3) rad -. Two pin-connected slider block, located at B, move freely on OA. The curved rod is described by the equationr = (250 · (8 - cos 0)) m. Hint: 1. Remember clockwise rotation is negative velocity. A d3 d1 d2 Values for the figure are given in the following table. Note the figure may not be to scale. Variable Value 01 130 degrees di 0.45 m d2 dz 0.2 m 0.325 m Using cylindrical components, a. Determine the cylinders's radial and transverse components of velocity at the instant shown, vr and b. Determine the cylinders's radial and transverse components of acceleration at the instant shown, a, and ag. c. Determine the cylinder's magnitude of the velocity at the instant shown, v d. Determine the cylinder's magnitude of the acceleration at the instant shown, aarrow_forwardin the figure the wheel D rotates with an angular velocity ω1 of 2 rad/s counterclockwise. Find the angular velocity ωE of the toothed wheel E with respect to the ground at the instant shown in the diagram.Note: Solve bar AB and sprocket E by IC method and re-solve it again by the realtive method of velocities.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY