
Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 1SQ
What are some applications of temperature-actuated switches?
Expert Solution & Answer

To determine
List the applications of a temperature-actuated switch.
Explanation of Solution
Temperature-actuated switch uses a mechanism that is used to sense and measure the temperature. The temperature switch works on the basis of the temperature variation occurring in an enclosed place or in an open area. The switch can be actuated when the specific or limited temperature range is reached. For example, thermal overload relay is the temperature switch used for the motor protection. Mostly used in control circuits.
The applications of temperature actuated switches are as follows:
- Heaters.
- Blowers.
- Fans.
- Solenoid valves.
- Pumps.
Conclusion:
Thus, the applications of the temperature-actuated switches are listed.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Don't use ai to answer I will report you answer
Show calculations
4.
Chapter 16 Solutions
Electric Motor Control
Ch. 16 - What are some applications of temperature-actuated...Ch. 16 - How is the average electrician involved with...Ch. 16 - Should a metal be heated or cooled to make it...Ch. 16 - Prob. 4SQCh. 16 - Prob. 5SQCh. 16 - Why should electrical contacts never be permitted...Ch. 16 - Prob. 7SQCh. 16 - Prob. 8SQCh. 16 - Why are thermistors often used as solid-state...Ch. 16 - What type of chemical is used to cause a pressure...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3.arrow_forward4. For the circuit in figure below, choose the load impedance Z₁ so that the power dissipated in it is a maximum. How much power will that be? 3 ΚΩ 15/0° V 26 ΚΩ 20001x j4 kQ 000 ZLarrow_forward1. In the phasor-domain shown in the figure, V = 120 20° V, I = 0.3 230° A, w = 1000 rad/s, R1 = 200 0, R2 = 2002, R3 = 1.2 kQQ, L =0.2 H, and C = 10 µF. Determine the complex power, average power and reactive power for each passive element. R₁ R₂ L ww ell R3arrow_forward
- 6. A JFET (IDSS bias point? = 10 mA,Vp=-5 V) is biased at ID = IDSS/4. What is the value of gm at thatarrow_forwardRefer to Exhibit #15. On the kitchen pion for the northwest comer of room 132, what does the number 29, its associated electrical symbol, and the 46" AFF indicate?arrow_forwardQ1/For the unity-feedback system where G (s) = K(s+ 1)(s+ 10) (s+4) (s-6) Sketch the root locus and find the value of K for which the system is closed-loop stable. Also find the break-in and breakaway points.arrow_forward
- The switch K at Figure 4 is closed at t = 0.2 second. Assuming iL(0) = 0, Find iL(t). 10 Ω w i₁(t) 2ix 20 Ω 2H 10u(t) t = 0.2 s Figure 4 Karrow_forwardThe voltage source in the circuit of Fig. P12.31 is, givenby us(t) = [10+5u(t)] V. Determine iL(t) for t ≥ 0, given thatR1 = 1 W, R2 = 1 W, L = 2 H, and C = 1 F.arrow_forwardDon't use ai to answer I will report you answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning


Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Why HIGH VOLTAGE DC power Transmission; Author: ElectroBOOM;https://www.youtube.com/watch?v=DFQG9kuXSxg;License: Standard Youtube License