INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
14th Edition
ISBN: 9780133918922
Author: Russell C. Hibbeler
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 1.6, Problem 1P

What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

(a)

Expert Solution
Check Mark
To determine

The weight in newtons of an object that has a mass in kg.

Answer to Problem 1P

The weight in newtons of an object that has a mass of 8kg is 78.5N_.

Explanation of Solution

Given:

The mass of the object is 8kg.

Write the conversion for the quantity.

8kg

Write the conversion formula.

kg=9.81N

Conclusion:

Convert the weight in newtons from kg.

W=8kg×9.81Nkg=78.5N

Thus, the weight in newtons of an object is 78.5N_.

(b)

Expert Solution
Check Mark
To determine

The weight in newtons of an object that has a mass in kg.

Answer to Problem 1P

The weight in newtons of an object that has a mass of 0.04kg is 0.392N_.

Explanation of Solution

Given:

The mass of the object is 0.44kg.

Write the conversion for the quantity.

0.44kg

Write the conversion formula.

kg=9.81N

Conclusion:

Convert the weight in newtons from kg.

W=0.04kg×9.81Nkg=0.392N

Thus, the weight in newtons of an object is 0.392N_.

(c)

Expert Solution
Check Mark
To determine

The weight in newtons of an object that has a mass in Mg.

Answer to Problem 1P

The weight in newtons of an object that has a mass of 760Mg is 7.458MN_.

Explanation of Solution

Given:

The mass of the object is 760Mg

Write the conversion for the quantity.

760Mg

Write the conversion formula.

Mg=9806.65N

Conclusion:

Convert the weight in newtons from Mg.

W=760Mg×9806.65NMg=(7.458×106N)×106MNN=7.458MN

Thus, the weight in newtons of an object is 7.458MN_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
One end of a thin uniform rod of mass m and length 31 rests against a smooth vertical wall. The other end of the rod is attached by a string of length 1 to a fixed point O which is located a distance 21 from the wall. A horizontal force of magnitude F₁ is applied to the lower end of the rod as shown. Assuming the rod and the string remain in the same vertical plane perpendicular to the wall, find the angle 0 between the rod and the wall at the position of static equilibrium. Notes: This quiz is going to walk you through a sequence of steps to do this. It won't give you the answers, but it will hopefully get you to see how to approach problems like this so that you have a working reference/template in the future. This is actually a modified version of a problem from the textbook (6.3). Note that in that problem, is not actually given. It has been introduced for convenience as we move through solving the problem, and should not show up in the final answer. DO NOT DO PROBLEM 6.3. It is…
v
13.64 The shaft shown in Sketch h transfers power between the two pulleys. The tension on the slack side (right pul- ley) is 30% of that on the tight side. The shaft rotates at 900 rpm and is supported uniformly by a radial ball bearing at points 0 and B. Select a pair of radial ball bear- ings with 99% reliability and 40,000 hr of life. Assume Eq. (13.83) can be used to account for lubricant clean- liness. All length dimensions are in millimeters. Ans. Cmin = 42,400 N.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY