EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 78GP
CE Predict/Explain A person floats in a boat in a small backyard swimming pool. Inside the boat with the person are some bricks. (a) If the person drops the bricks overboard to the bottom of the pool, does the water level in the pool increase, decrease, or stay the same? (b) Choose the best explanation from among the following:
- I. When the bricks sink they displace less water than when they were floating in the boat; hence, the water level decreases.
- II. The same mass (boat + bricks + person) is in the pool in either case, and therefore the water level remains the same.
- III. The bricks displace more water when they sink to the bottom than they did when they were above the water in the boat; therefore the water level increases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
EBK PHYSICS
Ch. 15.1 - Prob. 1EYUCh. 15.2 - A force F acts on a circular area of radius r....Ch. 15.3 - Is the increase in pressure from the surface of...Ch. 15.4 - Is the buoyant force exerted on a cubical block of...Ch. 15.5 - A cup is filled to the brim with water. Floating...Ch. 15.6 - Water flows with a speed V through a pipe. If the...Ch. 15.7 - Water flows through a pipe with a varying...Ch. 15.8 - Prob. 8EYUCh. 15.9 - Which pipe requires a greater pressure difference...Ch. 15 - Suppose you drink a liquid through a straw....
Ch. 15 - Considering your answer to the previous question,...Ch. 15 - Prob. 3CQCh. 15 - What holds a suction cup in place?Ch. 15 - Suppose a force of 400 N is required to push the...Ch. 15 - Why is it more practical to use mercury in the...Ch. 15 - An objects density can be determined by first...Ch. 15 - How does a balloonist control the vertical motion...Ch. 15 - Why is it possible for people to float without...Ch. 15 - Prob. 10CQCh. 15 - One day, while snorkeling near the surface of a...Ch. 15 - Since metal is more dense than water, how is it...Ch. 15 - A sheet of water passing over a waterfall is...Ch. 15 - It is a common observation that smoke rises more...Ch. 15 - Prob. 15CQCh. 15 - If you have a hair dryer and a Ping Pong ball at...Ch. 15 - Prob. 1PCECh. 15 - What weight of water is required to fill a...Ch. 15 - You buy a gold ring at a pawn shop. The ring has a...Ch. 15 - A cube of metal has a mass of 0.347 kg and...Ch. 15 - What is the downward force exerted by the...Ch. 15 - Prob. 6PCECh. 15 - A 71-kg person sits on a 3.9-kg chair. Each leg of...Ch. 15 - To prevent damage to floors (and to increase...Ch. 15 - Suppose that when you ride on your 7.85-kg bike...Ch. 15 - Shock Wave Pressure On February 15, 2013, a...Ch. 15 - Predict/Calculate The weight of your 1420-kg car...Ch. 15 - Two drinking glasses, 1 and 2, are filled with...Ch. 15 - Figure 15-39 shows four containers, each filled...Ch. 15 - Water in the lake behind Hoover Dam is 221 m deep....Ch. 15 - In a classroom demonstration, the pressure inside...Ch. 15 - As a storm front moves in, you notice that the...Ch. 15 - Prob. 17PCECh. 15 - A circular wine barrel 75 cm in diameter will...Ch. 15 - A cylindrical container with a cross-sectional...Ch. 15 - Prob. 20PCECh. 15 - Predict/Calculate A water storage tower is filled...Ch. 15 - Predict/Calculate You step into an elevator...Ch. 15 - Suppose you pour water into a container until it...Ch. 15 - Referring to Example 15-8, suppose that some...Ch. 15 - Prob. 25PCECh. 15 - BIO Predict/Calculate The patient in Figure 15-41...Ch. 15 - A cylindrical container 1.0 m tall contains...Ch. 15 - Prob. 28PCECh. 15 - Lead is more dense than aluminum. (a) Is the...Ch. 15 - A fish adjusts its buoyancy to hover in one place...Ch. 15 - A raft is 3.7 m wide and 6.1 m long. When a horse...Ch. 15 - Prob. 32PCECh. 15 - Prob. 33PCECh. 15 - A 3.2-kg balloon is filled with helium (density =...Ch. 15 - A hot-air balloon plus cargo has a mass of 312 kg...Ch. 15 - In the lab you place a beaker that is half full of...Ch. 15 - Predict/Explain A block of wood has a steel ball...Ch. 15 - Predict/Explain In the preceding problem, suppose...Ch. 15 - Measuring Density with a Hydrometer A hydrometer,...Ch. 15 - Predict/Explain Referring to Example 15-12,...Ch. 15 - On a planet in a different solar system the...Ch. 15 - An air mattress is 2.3 m long, 0.66 m wide, and 14...Ch. 15 - A solid block is attached to a spring scale. When...Ch. 15 - Prob. 44PCECh. 15 - BIO A person weighs 756 N in air and has a...Ch. 15 - Predict/Calculate A log floats in a river with...Ch. 15 - A person with a mass of 78 kg and a volume of...Ch. 15 - Predict/Calculate A block of wood floats on water....Ch. 15 - A piece of lead has the shape of a hockey puck,...Ch. 15 - Predict/Calculate A lead weight with a volume of...Ch. 15 - To water the yard, you use a hose with a diameter...Ch. 15 - Water flows through a pipe with a speed of 2.4...Ch. 15 - To fill a childs inflatable wading pool, you use a...Ch. 15 - Prob. 54PCECh. 15 - Prob. 55PCECh. 15 - Prob. 56PCECh. 15 - A river narrows at a rapids from a width of 12 m...Ch. 15 - Prob. 58PCECh. 15 - BIO Plaque in an Artery The buildup of plaque on...Ch. 15 - A horizontal pipe contains water at a pressure of...Ch. 15 - Unfiltered olive oil must flow at a minimum speed...Ch. 15 - Prob. 62PCECh. 15 - Predict/Calculate Water flows through a horizontal...Ch. 15 - A garden hose is attached to a water faucet on one...Ch. 15 - A water tank springs a leak. Find the speed of...Ch. 15 - (a) Find the pressure difference on an airplane...Ch. 15 - On a vacation flight, you look out the window of...Ch. 15 - Prob. 68PCECh. 15 - Predict/Calculate During a thunderstorm, winds...Ch. 15 - A garden hose with a diameter of 1.6 cm has water...Ch. 15 - Prob. 71PCECh. 15 - BIO Vasodilation When the body requires an...Ch. 15 - BIO (a) Find the volume of blood that flows per...Ch. 15 - BIO An Occlusion in an Artery Suppose an occlusion...Ch. 15 - Motor Oil The viscosity of 5W-30 motor oil changes...Ch. 15 - Prob. 76PCECh. 15 - Prob. 77GPCh. 15 - CE Predict/Explain A person floats in a boat in a...Ch. 15 - CE A person floats in a boat in a small backyard...Ch. 15 - CE The three identical containers in Figure 15-46...Ch. 15 - Prob. 81GPCh. 15 - A water main broke on Lake Shore Drive in Chicago...Ch. 15 - Prob. 83GPCh. 15 - BIO Power Output of the Heart The power output of...Ch. 15 - A solid block is suspended from a spring scale....Ch. 15 - A wooden block with a density of 710 kg/m3 and a...Ch. 15 - Predict/Calculate Floating a Ball and Block A...Ch. 15 - The Depth of the Atmosphere Evangelista Torricelli...Ch. 15 - The Hydrostatic Paradox I Consider the lightweight...Ch. 15 - The Hydrostatic Paradox II Consider the two...Ch. 15 - Predict/Calculate A backyard swimming pool is...Ch. 15 - A prospector finds a solid rock composed of...Ch. 15 - Predict/Calculate (a) If the tension in the string...Ch. 15 - Prob. 94GPCh. 15 - Prob. 95GPCh. 15 - Prob. 96GPCh. 15 - BIO A person weighs 685 N in air but only 497 N...Ch. 15 - Thunderstorm Outflow Rain-cooled air near the core...Ch. 15 - A horizontal pipe carries oil whose coefficient of...Ch. 15 - BIO A patient is given an injection with a...Ch. 15 - Going Over Like a Mythbuster Lead Balloon On one...Ch. 15 - A round wooden log with a diameter of 73 cm floats...Ch. 15 - Figure 15-52 Problem 103 103. The hollow,...Ch. 15 - A geode is a hollow rock with a solid shell and an...Ch. 15 - A tank of water filled to a depth d has a hole in...Ch. 15 - The water tank in Figure 15-53 is open to the...Ch. 15 - Prob. 107PPCh. 15 - Prob. 108PPCh. 15 - Doughnuts are cooked by dropping the dough into...Ch. 15 - Prob. 110PPCh. 15 - Predict/Calculate Referring to Example 15-8...Ch. 15 - Referring to Example 15-8 Find the height...Ch. 15 - Referring to Example 15-24 (a) Find the height H...Ch. 15 - Prob. 116PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
16. Explain some of the reasons why the human species has been able to expand in number and distribution to a g...
Campbell Biology: Concepts & Connections (9th Edition)
76. The direction of the net force on the craft is
A. Away from the surface of the moon.
B. In the direction of...
College Physics: A Strategic Approach (3rd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
65. Determine the molecular geometry of each molecule.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
Draw the enol tautomers for each of the following compounds. For compounds that have more than one enol tautome...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forwardA small piece of steel is tied to a block of wood. When the wood is placed in a tub of water with the steel on top, half of the block is submerged. Now the block is inverted so that the steel is under water. (i) Does the amount of the block submerged (a) increase, (b) decrease, or (c) remain the same? (ii) What happens to the water level in the tub when the block is inverted? (a) It rises. (b) It falls. (c) It remains the same.arrow_forwardA Hydrometer is an instrument used to determine liquid density. A simple one is sketched in Figure P9.84. The bulb of a syringe is squeezed and released to lift a sample of the liquid of interest into a tube containing a calibrated rod of known density. (Assume the rod is cylindrical.) The rod. of length L and average density 0, floats partially immersed in the liquid of density . A length h of the rod protrudes above the surface of the liquid. Show that the density of the liquid is given by =0LLh Figure P9.84arrow_forward
- Unreasonable Results A fairly large garden hose has an internal radius of 0.600 cm and a length of 23.0 m. The nozzle-less horizontal hose is attached to a faucet, and it delivers 50.0 L/S. (a) What water pressure is supplied by the faucet? (b) What is unreasonable about this pressure? (c) What is unreasonable about the premise? (d) What is the Reynolds number for the given flow? (Take the viscosity of water as 1.005103(N/m2)s .)arrow_forwardYou can squirt water a considerably greater distance by placing your thumb over the end of a garden hose and then releasing, than by leaving it completely uncovered. Explain how this works.arrow_forwardLogs sometimes float vertically in a lake because one end has become water-logged and denser than the other. What is the average density of a uniform-diameter log that floats with 20.0% of its length above water?arrow_forward
- The dolphin tank at an amusement park is rectangular in shape with a length of 40.0 m, a width of 15.0 m, and a depth of 7.50 m. The tank is filled to the brim to provide maximum splash during dolphin shows. What is the total amount of force exerted by the water on a. the bottom of the tank, b. the longer wall of the tank, and c. the shorter wall of the tank?arrow_forwardIn an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air and an apparent mass of 0.0850 kg when completely submerged with lungs empty. (a) What mass of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.75 L is she able to float without treading water with her lungs filled with air?arrow_forwardA 10.0-kg block of metal measuring 12.0 cm by 10.0 cm by 10.0 cm is suspended from a scale and immersed in water as shown in Figure P15.24b. The 12.0-cm dimension is vertical, and the top of the block is 5.00 cm below the surface of the water. (a) What are the magnitudes of the forces acting on the top and on the bottom of the block due to the surrounding water? (b) What is the reading of the spring scale? (c) Show that the buoyant force equals the difference between the forces at the top and bottom of the block.arrow_forward
- Review. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forwardA 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m 2.00 m 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newtons second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B. (Seawater has density 1 025 kg/m3.) (d) Using the value of B and the weight w of the survivor, calculate the weight w, of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?arrow_forwardA 1.00-kg beaker containing 2.00 kg of oil (density = 916.0 kg/m3) rests on a scale. A 2.00-kg block of iron suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY