Which expressions are correct for the rate of the following reaction?
(Select all that apply.)
a)
rate =
b)
rate =
c)
rate =
d)
rate =
e)
rate =
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
CHEMISTRY >CUSTOM<
- The rate of the decomposition of hydrogen peroxide, H2O2, depends on the concentration of iodide ion present. The rate of decomposition was measured at constant temperature and pressure for various concentrations of H2O2and of KI. The data appear below. Determine the order of reaction for each substance, write the rate law, and evaluate the rate constant. Rate [H2OJ [Kll (mL min-’) (mol L ’) (mol L ’) 0.090 0.15 0.033 0.178 0.30 0.033 0.184 0.15 0.066arrow_forwardNitrogen monoxide reacts with oxygen to give nitrogen dioxide. 2NO(g)+O2(g)2NO2(g) The rate law is [NO]/t = k[NO]2[O2], where the rate constant is 1.16 103 L2/(mol2 s) at 339oC. A vessel contains NO and O2 at 339oC. The initial partial pressures of NO and O2 arc 155 mmHg and 345 mmHg, respectively. What is the rate of decrease of partial pressure of NO (in mmHg per second)? (Hint: From the ideal gas law, obtain an expression for the molar concentration of a particular gas in terms of its partial pressure.)arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forward
- Define stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forwardThe following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forward
- Experiments show that the reaction of nitrogen dioxide with fluorine, 2 NO2(g) + F2(g) —* 2 FNO2(g) has the rate law Rate = *[NO2][FJ The reaction is thought to occur in two steps. Step 1: NO2(g) + F,(g) —* FNO,(g) + F(g) Step 2: NO2(g) + F(g) — FNO2(g) Show that the sum of this sequence of reactions gives the balanced equation for the overall reaction. Which step is rate determining?arrow_forwardOne possible mechanism for the decomposition of nitryl chloride, NO2CI, is What is the overall reaction? What rate law would be derived from this mechanism? What effect does increasing the concentration of the product NO2 have on the reaction rate?arrow_forwardHundreds of different reactions occur in the stratosphere, among them reactions that destroy the Earths ozone layer. The table below lists several (second-order) reactions of Cl atoms with ozone and organic compounds; each is given with its rate constant. For equal concentrations of Cl and the other reactant, which is the slowest reaction? Which is the fastest reaction?arrow_forward
- A study of the rate of dimerization of C4H6 gave the data shown in the table: 2C4H6C8H12 (a) Determine the average rate of dimerization between 0 s and 1600 s, and between 1600 s and 3200 s. (b) Estimate the instantaneous rate of dimerization at 3200 s from a graph of time versus [C4H6]. What are the units of this rate? (c) Determine the average rate of formation of C8H12 at 1600 s and the instantaneous rate of formation at 3200 s from the rates found in parts (a) and (b).arrow_forwardThe initial rate ( [NO]/ t] of the reaction of nitrogen monoxide and oxygen NO(g) + 2O2(g) NO2(g) was measured for various initial concentrations of NO and O2 at 25 C. Determine the rate equation from these data. What is the value of the rate constant, k, and what are its units?arrow_forwardThe isomerization of cyclopropane, C3H6, is believed to occur by the mechanism shown in the following equations: C3H6+C3H5k1C3H6+C3H6(Step1)C3H6k2C2=CHCH3(Step2) Here C3H6 is an excited cyclopropane molecule. At low pressure, Step 1 is much slower than Step 2. Derive the rate law for this mechanism at low pressure. Explain.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning