
In Problems 1-20 solve the given boundary-value problem by an appropriate integral transform. Make assumptions about boundedness where necessary.
1.
u(x, 0) = 0,

The solution of the given boundary value problem under given boundary conditions.
Answer to Problem 1RE
The solution of boundary value problem is
Explanation of Solution
Given:
The given boundary value problem is
Calculation:
The given boundary value problem is,
Take Fourier transform on both sides of the above equation,
Therefore, the equation is,
Apply Fourier cosine transform then the particular solution of the above equation is,
At the given boundary condition
Substitute the value of
At boundary condition,
Take Fourier transform of the above equation,
Partially differentiate the equation (3) with respect to
Equate the equations (4) and (5),
Substitute the value of
Take inverse Fourier transform of the above equation and apply Fourier cosine transform,
Thus, the solution of boundary value problem is
Want to see more full solutions like this?
Chapter 14 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
- The analysis of results from a leaf transmutation experiment (turning a leaf into a petal) is summarized by the type of transformation completed: A naturalist randomly selects three leaves from this set without replacement. Total Textural Transformation Yes No Total Yes 243 26 269 Total Color Transformation No 13 18 31 Total 256 44 300 Let X represent the number of leaves that have undergone both transformations. The appropriate probability distribution of X is a distribution. The parameters are population size N = size n = number of events K = and sample The probability that at least one leaf has undergone both transformations is probability to four decimal places.) X has a N = K= n = The requested probability is distribution. (Round thearrow_forwardThe life time of a certain battery is modeled with the Weibull distribution with shape parameter ẞ=2 and scale parameter 8-10 hours. Determine the mean time until failure of batteries. (Round the answer to one decimal place.) hoursarrow_forwardNeed help pleasearrow_forward
- Consider the probability distribution below. 0 1 3 f(x) 0.3 0.3 0.4 E(X)=1.5. The variance of XV (X) equals 1.65 ○ 1.28 1.56 2.33arrow_forward7. [10] Suppose that Xi, i = 1,..., 5, are independent normal random variables, where X1, X2 and X3 have the same distribution N(1, 2) and X4 and X5 have the same distribution N(-1, 1). Let (a) Find V(X5 - X3). 1 = √(x1 + x2) — — (Xx3 + x4 + X5). (b) Find the distribution of Y. (c) Find Cov(X2 - X1, Y). -arrow_forward1. [10] Suppose that X ~N(-2, 4). Let Y = 3X-1. (a) Find the distribution of Y. Show your work. (b) Find P(-8< Y < 15) by using the CDF, (2), of the standard normal distribu- tion. (c) Find the 0.05th right-tail percentage point (i.e., the 0.95th quantile) of the distri- bution of Y.arrow_forward
- 6. [10] Let X, Y and Z be random variables. Suppose that E(X) = E(Y) = 1, E(Z) = 2, V(X) = 1, V(Y) = V(Z) = 4, Cov(X,Y) = -1, Cov(X, Z) = 0.5, and Cov(Y, Z) = -2. 2 (a) Find V(XY+2Z). (b) Find Cov(-x+2Y+Z, -Y-2Z).arrow_forwardConsider the probability distribution below. 10 20 30 40 f(x) 0.3 0.4 0.2 0.1 The expected value of X equals 100 ○ 25 ○ 18 ○ 21arrow_forwardThe analysis of results from a leaf transmutation experiment (turning a leaf into a petal) is summarized by the type of transformation completed: A naturalist randomly selects three leaves from this set without replacement. Total Textural Transformation Yes No Total Yes 243 26 269 Total Color Transformation No 13 18 31 Total 256 44 300 Let X represent the number of leaves that have undergone both transformations. The appropriate probability distribution of X is a distribution. The parameters are population size N = size n = number of events K = and sample The probability that at least one leaf has undergone both transformations is probability to four decimal places.) X has a N = K= n = The requested probability is distribution. (Round thearrow_forward
- The thickness of a flange on an aircraft component is uniformly distributed between 0.95 and 1.05 millimeters. Determine the mean of flange thickness. millimeters (Two decimal places.)arrow_forwardThe following table is an output from a statistical software package. The assumed standard deviation = 1.5 Variable X N 9 Mean 29.542 Σ-1 - Sum of Squares (SS): SS = Σ₁ (x − x) ² SE Mean ? StDev Variance Sum of Squares 1.218 ? ? Fill the missing information. Round answers to 3 decimal places. SE Mean = Variance = Sum of Squares =arrow_forwardFor the random variable x = 1,2,3,4, the probability mass function is f(x) = x 10 Determine the following probabilities. Round answers to one decimal place. (a) P(X = 2) = (b) P(X ≤ 2) = (c) P(X > 4) = (d) P (0 < x < 3) =arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





