
Based on the total estimated load calculations, what is the current draw on the Study/Bedroom circuit? __________________________________________________________

Calculate the current drawn on the Study/Bedroom circuit based on the total estimated load calculations.
Answer to Problem 1R
The current draw on the Study/Bedroom circuit based on the total estimated load calculations is 9.4 amperes.
Explanation of Solution
Formula used:
Write the general expression to calculate the VOLT-AMPERES for single-phase.
Here,
E is the supply voltage, and
I is the current.
Rearrange the equation (1) to find the current I in amperes.
Calculation:
Refer to Table 14-1 in the textbook.
The total estimated load in VA for the Study/Bedroom outlet count in Circuit A21 is 1125 VA.
The single-phase supply voltage (E) is 120 V.
Substitute 1125 VA for VOLT-AMPERES and 120 V for E in equation (2) to find the current I in amperes.
Conclusion:
Thus, the current draw on the Study/Bedroom circuit based on the total estimated load calculations is 9.4 amperes.
Want to see more full solutions like this?
Chapter 14 Solutions
Electrical Wiring Residential
Additional Engineering Textbook Solutions
Concepts Of Programming Languages
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Web Development and Design Foundations with HTML5 (8th Edition)
Starting Out With Visual Basic (8th Edition)
SURVEY OF OPERATING SYSTEMS
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
- Can you draw the computed panel board (2nd attached pic) like the panel board management (1st attached pic)? ps. not graded, i just want to know what it looks like when it draw.arrow_forwardFor the circuit shown, let Is = 5, R₁-40, R2-30, R3-100, R4-80, R5-40, R6-30, R7- 10, and Rg= 100, and find: R₂ R6 ww www VX R3 R7 R8 RI R₁₂ Rs R5 www • The voltage Vx" (V) ⚫ The power absorbed by the output resistor Rg: Power= {Hint: you can use current divider (CD) or any other method.} (W) Tarrow_forwardFor the circuit shown, let V₁ = 26, R1-30, R₂-40, R3-50, R4-20, R5-100, R6-10, and find: RA R5 R3 V (+) R₁ R₂ R6 www • The voltage v (V) • The power delivered by the power source Vs: Power= {Hint: you can use voltage divider (VD) or any other method.} (W)arrow_forward
- In the circuit shown, let R₁-7, R₂-12, R3-24, R4-2, V₁ =17, V2 -68, and V3-51, to calculate the power delivered (or absorbed) by the circuit inside the box, as follows: {NOTE: On Multiple Choice Questions, like this problem, you have only one attempt } 1. The current I is equal to (choose the closed values in amperes) -0.791 0 -0.756 3.022 0.756 (A) -3.022 0.791 2. The power delivered (or absorbed) (choose the closest value in watts) (W) 373.345 0 -373.345 -52.234 52.234 65.079 O-24.833 R₁ V₂ R3 R₂ www V3 V₁ www R4arrow_forwardDetermine X(w) for the given function shown in Figure (1) by applying the differentiation property of the Fourier Transform. x(t) Figure (1) -2 -1 1 2arrow_forwardFor a enahnced-type NMOS transistor with V₁=+1V and kn'(w/L)= 2 mA/V2, find the minimum VDs required to operate in the saturation region when VGS=+2 V. What is the corresponding value of ID?arrow_forward
- . Using Properties to find the Z-Transform including the region of convergence for x(n) = n (2)" cos(0.2π(n − 2))u(n − 1) - -arrow_forwardJ VDD M₁ In the circuit of figure shown below, determine the region of operation of M₁as Vigoes from VDD.to zero. (You may want to draw a plot or just explain by the range, remember the transistor is a PMOS) Assume VDD = 2.5 V and | VTH | = 0.4V. 5 + 1 Varrow_forwardWe wish to design the circuit of the figure shown below for a drain current of 1 mA (l=1mA). If W/L = 18/0.18, compute R1 and R2 such that the input impedance is at least 20 k. R₁ VDD = 1.8 V 500 Ω M₁ R₂arrow_forward
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT
