
Concept explainers
In Problems 1 and 2, use the method of successive substitutions to approximate a solution of the given equation starting with the given value for

To find:
The approximate solution of the given equation
Answer to Problem 1RP
Solution:
The approximate solution of the given equation is
Explanation of Solution
Given:
The equation is,
The starting value is
Approach:
The procedure to determine the approximate solution for a function
a. Determine the recurrence relation as,
b. Start with the initial approximation
c. Continue the step (b) to obtain a sequence of approximations
This method is called successive substitution method.
Calculation:
The given equation is,
The recurrence relation for the given equation is,
The initial value is
Substitute
Substitute
Substitute
Substitute
Substitute
As both the values
Conclusion:
Hence, the approximate solution of the given equation is
Want to see more full solutions like this?
Chapter 13 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
- The marginal revenue (in thousands of dollars) from the sale of x handheld gaming devices is given by the following function. R'(x) = 4x (x² +26,000) 2 3 (a) Find the total revenue function if the revenue from 125 devices is $17,939. (b) How many devices must be sold for a revenue of at least $50,000? (a) The total revenue function is R(x) = (Round to the nearest integer as needed.) given that the revenue from 125 devices is $17,939.arrow_forwardUse substitution to find the indefinite integral. S 2u √u-4 -du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ) du. B. Substitute u for the quantity under the root. Let v = u-4, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = Use the substitution to evaluate the integral. so that dv= ' ( du. 2u -du= √√u-4arrow_forwardConsider the state space model X₁ = §Xt−1 + Wt, Yt = AX+Vt, where Xt Є R4 and Y E R². Suppose we know the covariance matrices for Wt and Vt. How many unknown parameters are there in the model?arrow_forward
- Use substitution to find the indefinite integral. Зи u-8 du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ( ) du. B. Substitute u for the quantity under the root. Let v = u-8, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = so that dv= ( ) du. Use the substitution to evaluate the integral. S Зи -du= u-8arrow_forwardAloha Airlines Flight 007 is flying due east but finds it necessary to detour around a group of thundershowers. The plane 1st turns at a bearing of N 73° E, flies for a while, then 2nd turns to intercept the original path and travels for 50 km at a bearing of S 41° E, back to the original path. As stated the plane traveled 50 km in the 2nd leg of the journey getting back to the path. How far did the plane travel in the 1st leg of the journey?arrow_forwardQuestion 6 Aloha Airlines Flight 007 is flying due east but finds it necessary to detour around a group of thundershowers. The plane 1st turns at a bearing of N 73° E, flies for a while, then 2nd turns to intercept the original path and travels for 50 km at a bearing of S 41° E, back to the original path. As stated the plane traveled 50 km in the 2nd leg of the journey getting back to the path. How far did the plane travel in the 1st leg of the journey? Question Help: Video Submit Question Jump to Answer P3 E E T Q Search L W F1 % R R FS F € t X C V 08 7 47 * B FB Y I E 7 コ コ I Barrow_forward
- Find the cost function if the marginal cost function is given by C'(x) = x C(x) = 2/5 + 5 and 32 units cost $261.arrow_forwardFind the cost function if the marginal cost function is C'(x) = 3x-4 and the fixed cost is $9. C(x) = ☐arrow_forwardFor the power series ∞ (−1)" (2n+1)(x+4)” calculate Z, defined as follows: n=0 (5 - 1)√n if the interval of convergence is (a, b), then Z = sin a + sin b if the interval of convergence is (a, b), then Z = cos asin b if the interval of convergence is (a, b], then Z = sin a + cos b if the interval of convergence is [a, b], then Z = cos a + cos b Then the value of Z is -0.502 0.117 -0.144 -0.405 0.604 0.721 -0.950 -0.588arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage