Concept explainers
Recall the definition of work done on an object by an agent that exerts a force on that object. (You may wish to consult your textbook.)
In the spaces provided, sketch arrows representing (1) a force exerted on an object and (2) the displacement of that object for cases in which the work done by the agent is:
In each case, does your sketch represent the only possible relative directions of the force and displacement vectors? If so, explain. If not, sketch at least one other possible set of vectors.
The direction of the force exerted on an object and the direction of displacement of an object for different cases.
Explanation of Solution
Introduction:
Work is the measure of energy transferred when a force is applied to move an object through a displacement. Work done by a force acting on an object is equal to the product of the magnitude of the displacement and the component of force parallel to that displacement.
When work done on an object is positive, then the direction of the force exerted on an object and the direction of displacement of an object is the same.
The direction of force and displacement of an object when the work done is positive is shown in figure 1.
Figure 1
When work done on an object is negative, then the direction of the force exerted on an object and the direction of displacement of an object is the opposite.
The direction of force and displacement of an object when work done is negative is shown in figure 2
Figure 2
When work done is zero, then, in this case, either displacement is zero or there is no change in the kinetic energy.
The direction of force and displacement of an object when the work done is negative is shown in figure 3.
Figure 3
Conclusion:
Therefore, the direction of force and displacement for positive, negative and zero work done is shown in figure 1, 2 and 3 respectively.
Want to see more full solutions like this?
Chapter 13 Solutions
Tutorials in Introductory Physics
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Microbiology: An Introduction
Biology: Life on Earth (11th Edition)
Microbiology with Diseases by Body System (5th Edition)
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning